Giving a "tandem" boost to solar-powered water splitting by Staff Writers Nagoya, Japan (SPX) Jul 14, 2021
Turning away from fossil fuels is necessary if we are to avert an environmental crisis due to global warming. Both industry and academia have been focusing heavily on hydrogen as a feasible clean alternative. Hydrogen is practically inexhaustible and when used to generate energy, only produces water vapor. However, to realize a truly eco-friendly hydrogen society, we need to be able to mass-produce hydrogen cleanly in the first place. One way to do that is by splitting water via "artificial photosynthesis," a process in which materials called "photocatalysts" leverage solar energy to produce oxygen and hydrogen from water. However, the available photocatalysts are not yet where they need to be to make solar-powered water splitting economically feasible and scalable. To get them there, two main problems should be solved: the low solar-to-hydrogen (STH) conversion efficiency and the insufficient durability of photoelectrochemical water splitting cells. At Nagoya Institute of Technology, Japan, Professor Masashi Kato and his colleagues have been working hard to take photocatalysts to the next level by exploring new materials and their combinations and gaining insight into the physicochemical mechanisms that underlie their performances. In their latest study published in Solar Energy Materials and Solar Cells, Dr. Kato and his team have now managed to do just that by combining titanium oxide (TiO2) and p-type cubic SiC (3C-SiC), two promising photocatalyst materials, into a tandem structure that makes for a highly durable and efficient water splitting cell (see Figure). The tandem structure explored by the team in their study has both the photocatalyst materials in series, with a semi-transparent TiO2 operating as a photoanode and 3C-SiC as a photocathode. Since each material absorbs solar energy at different frequency bands, the tandem structure can markedly increase the conversion efficiency of the water splitting cell by allowing more of the incoming light to excite charge carriers and generate the necessary currents. The team measured the effects of applied external voltage and pH on the photocurrents generated in the cell and then conducted water splitting experiments under different light intensities. They also measured the amounts of oxygen and hydrogen generated. The results were highly encouraging, as Dr. Kato remarks: "The maximum applied-bias photon-to-current efficiency measured was 0.74%. This value, coupled with the observed durability of about 100 days, puts our water splitting system among the best currently available." Moreover, the findings of this study hinted at some of the potential mechanisms behind the observed performance of the proposed tandem structure. Further research is needed to continue improving photoelectrochemical water splitting systems until they become widely applicable. Still, this study is clearly a step towards a clean future. "Our contributions shall accelerate the development of artificial photosynthesis technologies, which will generate energy resources directly from solar light. Thus, our findings may assist in the realization of sustainable societies," says Dr. Kato, speaking of his vision. We certainly hope the future he envisions is not too far away!
Solar hydrogen for Antarctica - study shows advantages of thermally coupled approach Berlin, Germany (SPX) Jul 12, 2021 When environmental physicist Kira Rehfeld, from Heidelberg University, visited Antarctica for her research, she was struck by the intense light there. "It's always light in summer. This solar radiation could actually be used to supply the research infrastructure with energy", she observes. However, generators, engines, and heaters in these remote regions have mostly been powered until now by fossil fuels delivered by ship, such as petroleum or petrol, which cause global warming. Besides the high a ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |