Harvesting light like nature does by Staff Writers Richland WA (SPX) Jun 06, 2021
Inspired by nature, researchers at Pacific Northwest National Laboratory (PNNL), along with collaborators from Washington State University, created a novel material capable of capturing light energy. This material provides a highly efficient artificial light-harvesting system with potential applications in photovoltaics and bioimaging. The research provides a foundation for overcoming the difficult challenges involved in the creation of hierarchical functional organic-inorganic hybrid materials. Nature provides beautiful examples of hierarchically structured hybrid materials such as bones and teeth. These materials typically showcase a precise atomic arrangement that allows them to achieve many exceptional properties, such as increased strength and toughness. PNNL materials scientist Chun-Long Chen, corresponding author of this study, and his collaborators created a new material that reflects the structural and functional complexity of natural hybrid materials. This material combines the programmability of a protein-like synthetic molecule with the complexity of a silicate-based nanocluster to create a new class of highly robust nanocrystals. They then programmed this 2D hybrid material to create a highly efficient artificial light-harvesting system. "The sun is the most important energy source we have," said Chen. "We wanted to see if we could program our hybrid nanocrystals to harvest light energy - much like natural plants and photosynthetic bacteria can - while achieving a high robustness and processibility seen in synthetic systems." The results of this study were published May 14, 2021, in Science Advances.
Big dreams, tiny crystals They then found that, under the right conditions, they could induce these molecules to self-assemble into perfectly shaped crystals of 2D nanosheets. This created another layer of cell-membrane-like complexity similar to that seen in natural hierarchical structures while retaining the high stability and enhanced mechanical properties of the individual molecules. "As a materials scientist, nature provides me with a lot of inspiration" said Chen. "Whenever I want to design a molecule to do something specific, such as act as a drug delivery vehicle, I can almost always find a natural example to model my designs after."
Designing bio-inspired materials Once again looking to nature for inspiration, the scientists created a system that could capture light energy much in the way pigments found in plants do. They added pairs of special "donor" molecules and cage-like structures that could bind an "acceptor" molecule at precise locations within the nanocrystal. The donor molecules absorb light at a specific wavelength and transfer the light energy to the acceptor molecules. The acceptor molecules then emit light at a different wavelength. This newly created system displayed an energy transfer efficiency of over 96%, making it one of the most efficient aqueous light-harvesting systems of its kind reported thus far.
Demonstrating the uses of POSS-peptoids for light harvesting When the acceptor molecules are absent, the color change is not observed. Though the team only demonstrated the usefulness of this system for live cell imaging so far, the enhanced properties and high programmability of this 2D hybrid material leads them to believe this is one of many applications. "Though this research is still in its early stages, the unique structural features and high energy transfer of POSS-peptoid 2D nanocrystals have the potential to be applied to many different systems, from photovoltaics to photocatalysis," said Chen. He and his colleagues will continue to explore avenues for application of this new hybrid material.
Holograms increase solar energy yield Washington DC (SPX) Jun 06, 2021 The energy available from sunlight is 10,000 times more than what is needed to supply the world's energy demands. Sunlight has two main properties that are useful in the design of renewable energy systems. The first is the amount power falling on a fixed area, like the ground or a person's roof. This quantity varies with the time of day and the season. The second property is the colors or spectrum of the sunlight. One way to capture solar energy is to use solar cells that directly turn sunlight in ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |