Solar Energy News  
SOLAR DAILY
Homing in on longer-lasting perovskite solar cells
by David L. Chandler and MIT News
Boston MA (SPX) Mar 31, 2021

Researchers have developed a new way to test long-lasting perovskite formulations that could be used for solar cells. The high-throughput automated degradation test system monitors the breakdown of the material through its changes in color as it darkens.

Materials called perovskites are widely heralded as a likely replacement for silicon as the material of choice for solar cells, but their greatest drawback is their tendency to degrade relatively rapidly. Over recent years, the usable lifetime of perovskite-based cells has gradually improved from minutes to months, but it still lags far behind the decades expected from silicon, the material currently used for virtually all commercial solar panels.

Now, an international interdisciplinary team led by MIT has come up with a new approach to narrowing the search for the best candidates for long-lasting perovskite formulations, out of a vast number of potential combinations. Already, their system has zeroed in on one composition that in the lab has improved on existing versions more than tenfold. Even under real-world conditions at full solar cell level, beyond just a small sample in a lab, this type of perovskite has performed three times better than the state-of-the-art formulations.

The findings appear in the journal Matter, in a paper by MIT research scientist Shijing Sun, MIT professors, Moungi Bawendi, John Fisher, and Tonio Buonassisi, who is also a principal investigator at the Singapore-MIT Alliance for Research and Technology (SMART), and 16 others from MIT, Germany, Singapore, Colorado, and New York.

Perovskites are a broad class of materials characterized by the way atoms are arranged in their layered crystal lattice. These layers, described by convention as A, B, and X, can each consist of a variety of different atoms or compounds. So, searching through the entire universe of such combinations to find the best candidates to meet specific goals - longevity, efficiency, manufacturability, and availability of source materials - is a slow and painstaking process, and largely one without any map for guidance.

"If you consider even just three elements, the most common ones in perovskites that people sub in and out are on the A site of the perovskite crystal structure," which can each easily be varied by 1-percent increments in their relative composition, Buonassisi says. "The number of steps becomes just preposterous. It becomes very, very large" and thus impractical to search through systematically. Each step involves the complex synthesis process of creating a new material and then testing its degradation, which even under accelerated aging conditions is a time-consuming process.

The key to the team's success is what they describe as a data fusion approach. This iterative method uses an automated system to guide the production and testing of a variety of formulations, then uses machine learning to go through the results of those tests, combined again with first-principles physical modeling, to guide the next round of experiments. The system keeps repeating that process, refining the results each time.

Buonassisi likes to compare the vast realm of possible compositions to an ocean, and he says most researchers have stayed very close to the shores of known formulations that have achieved high efficiencies, for example, by tinkering just slightly with those atomic configurations. However, "once in a while, somebody makes a mistake or has a stroke of genius and departs from that and lands somewhere else in composition space, and hey, it works better! A happy bit of serendipity, and then everybody moves over there" in their research. "But it's not usually a structured thought process."

This new approach, he says, provides a way to explore far offshore areas in search of better properties, in a more systematic and efficient way. In their work so far, by synthesizing and testing less than 2 percent of the possible combinations among three components, the researchers were able to zero in on what seems to be the most durable formulation of a perovskite solar cell material found to date.

"This story is really about the fusion of all the different sets of tools" used to find the new formulation, says Sun, who coordinated the international team that carried out the work, including the development of a high-throughput automated degradation test system that monitors the breakdown of the material through its changes in color as it darkens. To confirm the results, the team went beyond making a tiny chip in the lab and incorporated the material into a working solar cell.

"Another point of this work is that we actually demonstrate, all the way from the chemical selection until we actually make a solar cell in the end," she says. "And it tells us that the machine-learning-suggested chemical is not only stable in its own freestanding form. They can also be translated into real-life solar cells, and they lead to improved reliability." Some of their lab-scale demonstrations achieved longevity as much as 17 times greater than the baseline formula they started with, but even the full-cell demonstration, which includes the necessary interconnections, outlasted the existing materials by more than three times, she says.

Buonassisi says the method the team developed could also be applied to other areas of materials research involving similarly large ranges of choice in composition. "It really opens the door for a mode of research where you can have these short, quick loops of innovation happening, maybe at a subcomponent or a material level. And then once you zero in on the right composition, you bump it up into a longer loop that involves device fabrication, and you test it out" at that next level.

"It's one of the big promises of the field to be able to do this type of work," he says. "To see it actually happen was one of those [highly memorable] moments. I remember the exact place I was when I received the call from Shijing about these results - when you start to actually see these ideas come to life. It was really stunning."

"What is particularly exciting about [this] advance is that the authors use physics to guide the intuition of the [optimization] process, rather than limiting the search space with hard constraints," says University Professor Edward Sargent of the University of Toronto, a specialist in nanotechnology who was not connected with this research. "This approach will see widespread exploitation as machine learning continues to move toward solving real problems in materials science."

Research Report: "A data fusion approach to optimize compositional stability of halide perovskites"


Related Links
Photovoltaics Research Laboratory at MIT
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Unusual magnetic transition in perovskite oxide can help boost spintronics
Tokyo, Japan (SPX) Mar 30, 2021
Transition metal perovskites oxides exhibit several desirable properties, including high-temperature superconductivity and electrocatalysis. Now, scientists at Tokyo Institute of Technology explore the structure and properties of a perovskite oxide, PbFeO3, in anticipation of the unusual charge distribution and exotic magnetic transitions displayed by such systems. They report two of the magnetic transitions, with a distinctive transition above room temperature and look into its causes, opening doors to ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Turning wood into plastic

'Keep off the grass': the biofuel that could help us achieve net zero

Shrub willow as a bioenergy crop

New porous material promising for making renewable energy from water

SOLAR DAILY
Motion picture cameras to help androids make realistic facial expressions

Advancement creates nanosized, foldable robots

DyRET robot can rearrange its body to walk in new environments

Robots learn faster with quantum technology

SOLAR DAILY
US to invest heavily to boost offshore wind farms

TechnipFMC enters partnership with Magnora to develop floating offshore wind projects

Field study shows icing can cost wind turbines up to 80% of power production

BP enters UK offshore wind sector

SOLAR DAILY
Germany postpones ex-VW boss's 'dieselgate' trial

VW seeks damages from ex-CEOs over dieselgate scandal

'Das Auto' goes electric as VW takes on Tesla

Musk tells China data gathered by Teslas remain secret: report

SOLAR DAILY
Researchers harvest energy from radio waves to power wearable devices

Study reveals plunge in lithium-ion battery costs

Big breakthrough for 'massless' energy storage

Understanding imperfections in fusion magnets

SOLAR DAILY
Scientists find explanation for abnormally fast release of gas from nuclear fuel

Wireless tech a 'game changer' for nuclear power plants

Framatome to deliver PROtect advanced fuel technologies to Xcel Energy's Monticello Nuclear Generating Plant

The NWMO 2020 annual report celebrates progress and resilience

SOLAR DAILY
Cities worldwide dim lights to mark Earth Hour

Was it wind or gas that caused Texas electricity system to crash in the midst of deep freeze

Bank of England eyes zero-carbon 'momentum' thanks to Biden

UK CO2 emissions halved since 1990: study

SOLAR DAILY
Forests, soil may not keep pace with CO2 emissions, experts warn

Green cities use space to boost well being

Russia, an oil giant, goes big on timber

Climate change, human activity threatens carbon uptake in Amazon forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.