Large-area periodic perovskite nanostructures for lenticular printing laser displays by Staff Writers Beijing, China (SPX) Feb 05, 2021
Lead halide perovskites, with high refractive index and excellent optoelectronic property, have been used in both constructing high-quality optical resonators/lasers and fabricating high-efficiency light-emitting devices for advanced displays. Lenticular printing provides an illusion of depth and shows varying images upon view angles, which is considered as a promising approach towards future stereoscopic displays. To realize lenticular-printing-based display, it is required to modulate the outcoupling direction of emission light rather than that of incident light. Ideally, the lenticular-lens-like structures would be integrated into the active layer of light-emitting devices. Therefore, the hybrid perovskite becomes a promising candidate for the investigation of lenticular printing display; however, it remains a challenge to realize large-area periodic structures of perovskite materials especially with a feature size of wavelength scale. Very recently, Dr. Chuang Zhang, Dr. Yong Sheng Zhao from Institute of Chemistry, Chinese Academy of Sciences, Dr. Yuchen Wu from Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, and their colleagues fabricated lead halide perovskite periodic structures via a space-confined solution growth method. The spatial resolution could be down to hundreds of nanometers while the substrate size up to several centimeters. These structures were able to not only modulate the reflection of visible light, but also control the angle of light emission from hybrid perovskites. More importantly, the low-threshold lasing based on distributed feedback was observed from the periodic structures, and its narrow line-width offered possibility to realize the lenticular printing laser display, according to the wavelength-dependent outcoupling of emission colors. A prototype of laser display panels was then realized based on the mixed halide perovskites, in which the green and red colored images were obtained at high and low angles respectively. This work would shed light on the design and fabrication of perovskites materials for new types of display techniques.
Research Report: "Large-area periodic lead halide perovskite nanostructures for lenticular printing laser displays"
Tiny 3D structures enhance solar cell efficiency Halle, Germany (SPX) Feb 04, 2021 A new method for constructing special solar cells could significantly increase their efficiency. Not only are the cells made up of thin layers, they also consist of specifically arranged nanoblocks. This has been shown in a new study by an international research team led by the Martin Luther University Halle-Wittenberg (MLU), which was published in the scientific journal Nano Letters. Commercially available solar cells are mostly made of silicon. "Based on the properties of silicon it's not feasib ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |