Solar Energy News
SOLAR DAILY
Migrating ions through the perovskite layer in two dimensions
stock illustration only
Migrating ions through the perovskite layer in two dimensions
by Staff Writers
Changchun, China (SPX) Apr 13, 2023

Electrostatic doping has been widely used in low-dimensional materials, including carbon nanotube (CNT) and two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs). Unlike conventional lattice doping with impurity atoms, it is challenging to achieve doping in nanoscale materials due to the limited physical space. The electrostatic doping opens an effective pathway to tune the charge carriers in nanoscale materials without introducing impurity atoms which can perturb the atomic arrangement and degrade the intrinsic electronic properties of the nanoscale materials.

In a new paper published in eLight, a team of scientists led by Professors Sung-Joon Lee and Hung-Chieh Cheng from the University of California Los Angeles has developed a methylammonium lead iodide perovskite (CH3NH3PbI3)/2DSC heterojunction device.

Recently, ionic solids have been explored for creating a p-n junction in monolayer 2D materials. The frozen mobile ions provide electrostatic fields to modulate the carrier density of underlying 2D semiconducting channel. Due to the well-defined shape of ionic solids, local control of the doping on 2D semiconductors (2DSCs) allows diverse designs to integrate solid-state electronic/optoelectronic devices with minimum crosstalk. The manipulation of silver ions in solid-state superionic silver iodide (AgI) was employed for tailoring the carrier type of 2DSCs to achieve reversibly programmable transistors, diodes, photodiodes and logic gates.

The monolayer TMDs have been widely adopted in novel optoelectronic applications such as electrically tunable light-emitting diodes (LEDs), gate-controlled p-n junction diodes, and solar cells. However, the monolayer TMDs exhibit some intrinsic limits for high-performance optoelectronic applications. The incorporation of impurity dopants in the atomically thin 2D lattices has been fundamentally limited by the physical space in the atomically thin lattices.

It has been a persistent challenge to tailor the charge doping type/density in monolayer 2DSCs using selected lattice dopants. Consequently, the p-n photodiodes made from 2DSCs are often plagued by non-ideal contacts at either p- or nside, limiting the achievable open circuit voltage (VOC). Additionally, the total light absorption and spectral sensitivity of 2DSCs are fundamentally limited by their atomically thin geometry. It compromises the photocarrier generation efficiency and the achievable external quantum efficiency (EQE).

Considerable efforts have been devoted to overcoming such intrinsic limitations by heterogeneously integrating with other well-known optoelectronic materials. For example, interfacing with organic dye molecules has been demonstrated as an effective strategy to control its optoelectrical properties. Hybrid lead halide perovskites (LHPs) have received substantial attention for photovoltaics due to their excellent optoelectronic performance and low fabrication cost.

Despite its extraordinary potential, the "soft lattice" ionic LHPs are typically plagued with ion migrations under voltage bias, leading to poor material stability and large hysteresis in the voltage-dependent photocurrents. The migration of positively or negatively charged ions could induce ion accumulation or ionic charge imbalance under applied electric fields. Here, we exploit such ionic charge imbalance in LHPs to induce reversible doping in nearby 2DSCs to create high-performance photodiodes.

Methylammonium lead iodide (CH3NH3PbI3 or MAPbI3) represents the most prominent example of LHPs with excellent optical absorption and photoresponsive properties but is seriously plagued by ionic motion. Although undesirable for stable operation of solar cell applications, the accumulation of ionic charge from the bias-induced ions migration in MAPbI3 can be exploited for selectively doping nearby 2DSCs to create perovskite-sensitized 2D photodiodes with high optoelectronic performance.

In this regard, the atomically thin 2DSCs are ideally suited for efficient coupling with the ionic solids. They serve as a non-covalent doping agent to reversibly induce the reconfigurable p-type or n-type doping effect. Such tunable doping effect further offers a new class of 2DSC-based photodiodes with switchable polarities. With van der Waals integration of ionic solids with excellent optoelectronic properties, the 2D diodes formed from the ionic-doping effect provide an efficient way to extract photogenerated carriers in MAPbI3.

Research Report:Lead halide perovskite sensitized WSe2 photodiodes with ultrahigh open circuit voltages

Related Links
Changchun Institute of Optics, Fine Mechanics And Physics
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
Solar cells charging forward
Kyoto, Japan (SPX) Apr 11, 2023
Ongoing challenges in solar cell production may partly explain why non-renewable energy resources - such as coal, oil, and natural gas - have overshadowed current optoelectronic devices. Now, researchers at Kyoto University may have found an environmentally friendlier solution with enhanced performance, utilizing PEDOT:PSS/silicon heterojunction solar cells. This hybrid type is made of organic-inorganic material, which could potentially ease the production process compared to conventional silicon- ... read more

SOLAR DAILY
Dutch refinery to feed airlines' thirst for clean fuel

Low concentration CO2 can be reused as plastic precursor using artificial photosynthesis

Queensland biofuel refinery to turn agricultural by-products into sustainable aviation fuel

Turning vegetable oil industry waste into power

SOLAR DAILY
PickNik Robotics and Motiv Space Systems partner for advanced robotics development

Twitter working on AI despite Musk call for global pause

It's all in the wrist: energy-efficient robot hand learns how not to drop the ball

US weighs rules for ChatGPT-like AI

SOLAR DAILY
Wind farms drive away certain seabirds: study

Wind project near S.African elephant park riles activists

UK offshore staff 'want public ownership of energy firms'

Machine learning could help kites and gliders to harvest wind energy

SOLAR DAILY
Biden admin unveils tough emissions rules to speed electric auto shift

Japan, land of the hybrid car, takes slowly to EVs

Walmart to add EV chargers to thousands of US stores

Annual net profit of Chinese EV giant BYD up 446%

SOLAR DAILY
Fish-inspired, self-charging electric battery may help power space applications

Tesla to build battery plant in Shanghai: state media

New 'smart layer' could enhance durability and efficiency of solid-state batteries

Underground water could be the solution to green heating and cooling

SOLAR DAILY
Germany ends nuclear era as last reactors power down

How to decommission a nuclear power plant

Ukraine plant 'living on borrowed time': UN nuclear chief

Europe's largest nuclear reactor Olkiluoto 3 enters service in Finland

SOLAR DAILY
Cities will need more resilient electricity networks to cope with extreme weather

Sun, wind power make record 12% of world electricity: survey

Fossil fuel pledges divide G7 in 'critical decade' for climate

Only 5% of top UK firms have 'credible' net zero plans: study

SOLAR DAILY
California's beetle-killed, carbon-storing pine forests may not come back

Despite Lula's promises, deforestation still rampant in Brazil

Bold talk, slow walk as Brazil's Lula sets out to save Amazon

Why are forests turning brown in summer

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.