Molecular additives enhance mechanical properties of organic solar cell material by Staff Writers Bethlehem PA (SPX) Aug 18, 2020
Organic solar cells are ideal for use in flexible electronics because of the inherently malleable nature of semiconducting polymers. Recent research on the interplay between processing, thermodynamics and mechanical stability of typical photoactive layers in organic cells is providing a deeper understanding of these high-potential materials. Ganesh Balasubramanian, P.C. Rossin assistant professor of Mechanical Engineering and Mechanics at Lehigh University, and his graduate student Joydeep Munshi recently set out to understand how stable these materials are when deformed, and whether the promising properties can be realized under harsh loading conditions when the solar cells may be subject to stretching and compression. Through computational experiments using the leadership class computing resources in Frontera, the team demonstrated that adding small molecules to the semiconducting polymer blend enhances the performance and stability of material used in organic solar cells. They predict this is also true for organic solar cell material more generally. The study is described in an article, "Elasto-morphology of P3HT:PCBM bulk heterojunction organic solar cells" featured on the back cover of Soft Matter. Additional authors include: professors TeYu Chien at the University of Wyoming and Wei Chen, at Northwestern University. "Based on previous literature, we anticipated that variations in the materials processing parameters would influence the structure as well as the thermal and mechanical properties of these solar cells," says Balasubramanian. "However, the finding that presence of small molecular additives can augment the mechanical properties is new knowledge gained from this work." The team demonstrated that, in addition to the solar-to-electrical power conversion efficiency, the mechanical stability and flexibility of typical organic solar cells is significantly impacted by the presence of molecular additives. "This could prove crucial towards the commercialization of organic solar cells," says Balasubramanian. The results were achieved by performing large scale molecular simulations in the supercomputer Frontera, located at the Texas Advanced Computing Center (TACC) at the University of Texas at Austin), which is the world's fastest academic supercomputer. The predictions consisted of the deformation mechanisms of the polymer blend under straining conditions as well as examining the structure/morphology of the material upon loading. Balasubramanian's team has been among the first to utilize Frontera. While similar approaches have been considered for interrogating the properties of organic photovoltaic materials, the correlation between the material structure and elastic properties had not been done before, according to Balasubramanian. By adding molecular additives to the polymeric blends, advanced solar power materials and devices can be fabricated that sustain extreme operational stress-strain conditions while delivering superior performance. He adds: "The research has the potential to provide new directions for scientific practices in this field of materials and energy research."
New solar facility is expected to offset 100 percent of Northrop Grumman's electricity use in Virginia Falls Church VA (SPX) Aug 18, 2020 Northrop Grumman Corporation has entered into a 15-year virtual power purchase agreement (VPPA) with Dominion Generation, Inc., a subsidiary of Dominion Energy, that enables the construction of a new 62.5 megawatt solar facility in Orange County, Virginia. Once operational in 2022, it is expected that the new solar facility will add enough renewable energy to the local grid to match 100 percent of Northrop Grumman's electricity use in the Commonwealth across its manufacturing and office operations ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |