Solar Energy News  
SOLAR DAILY
Molecular coating enhances organic solar cells
by Staff Writers
Thuwal, Saudi Arabia (SPX) Jun 11, 2021

KAUST scientists have developed an organic solar cell with an electrode coating just one molecule thick that outperforms the most common photovoltaic cells.

An electrode coating just one molecule thick can significantly enhance the performance of an organic photovoltaic cell, KAUST researchers have found. The coating outperforms the leading material currently used for this task and may pave the way for improvements in other devices that rely on organic molecules, such as light-emitting diodes and photodetectors.

Unlike the most common photovoltaic cells that use crystalline silicon to harvest light, organic photovoltaic cells (OPVs) rely on a light-absorbing layer of carbon-based molecules. Although OPVs cannot yet rival the performance of silicon cells, they could be easier and cheaper to manufacture at a very large scale using printing techniques.

When light enters a photovoltaic cell, its energy frees a negative electron and leaves behind a positive gap, known as a hole. Different materials then gather the electrons and holes and guide them to different electrodes to generate an electrical current. In OPVs, a material called PEDOT:PSS is widely used to ease the transfer of generated holes into an electrode; however, PEDOT:PSS is expensive, acidic and can degrade the cell's performance over time.

The KAUST team has now developed a better alternative to PEDOT:PSS. They use a much thinner coating of a hole-transporting molecule called Br-2PACz, which binds to an indium tin oxide (ITO) electrode to form a single-molecule layer. The organic cell using Br-2PACz achieved a power conversion efficiency of 18.4 percent, whereas an equivalent cell using PEDOT:PSS reached only 17.5 percent.

"We were very surprised indeed by the performance enhancement," says Yuanbao Lin, Ph.D. student and member of the team. "We believe Br-2PACz has the potential to replace PEDOT:PSS due to its low cost and high performance."

Br-2PACz increased the cell's efficiency in several ways. Compared with its rival, it caused less electrical resistance, improved hole transport and allowed more light to shine through to the absorbing layer. Br-2PACz also improved the structure of the light-absorbing layer itself, an effect that may be related to the coating process.

The coating could even improve the recyclability of the solar cell. The researchers found that the ITO electrode could be removed from the cell, stripped of its coating and then reused as if it was new.

In contrast, PEDOT:PSS roughens the surface of the ITO so that it performs poorly if reused in another cell. "We anticipate this will have a dramatic impact on both the economics of OPVs and the environment," says Thomas Anthopoulos, who led the research.

Research paper


Related Links
King Abdullah University Of Science and Technology (KAUST)
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Engineers apply physics-informed machine learning to solar cell production
Austin TX (SPX) Jun 10, 2021
Today, solar energy provides 2% of U.S. power. However, by 2050, renewables are predicted to be the most used energy source (surpassing petroleum and other liquids, natural gas, and coal) and solar will overtake wind as the leading source of renewable power. To reach that point, and to make solar power more affordable, solar technologies still require a number of breakthroughs. One is the ability to more efficiently transform photons of light from the Sun into useable energy. Organic photovoltaics ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
World-first discovery could fuel the new green ammonia economy

Saving the climate with solar fuel

Seaweed experts launch global group to restore kelp forests with new technique

First test of tropical seaweed farming for biofuels production begins off Puerto Rico

SOLAR DAILY
Humans are ready to take advantage of benevolent AI

Slender robotic finger senses buried items

Enabling human control of autonomous partners

Air Force unveils exoskeleton to aid aerial ports in lifting

SOLAR DAILY
US to open California coast to wind power

US approves its biggest offshore wind farm yet

Vertical turbines could be the future for wind farms

Researchers working to further develop monopile production for offshore wind farms

SOLAR DAILY
Waymo raises $2.5 bn to rev self-driving cars

General Motors hits the gas on electric, autonomous push

Toyota targets carbon-neutral plants by 2035

'Dieselgate' fraud: Timeline of a scandal

SOLAR DAILY
Electric heat pumps use much less energy than furnaces, and can cool houses too

Highview Enlasa developing liquid air energy storage facility in Chile

Engineers design battery to power flying cars

Compound commonly found in candles lights the way to grid-scale energy storage

SOLAR DAILY
Manchester launches Advanced Nuclear Energy roadmap

EDF could shut two more UK nuclear plants: report

China nuclear plant works to fix issue, ops 'within safety parameters'

China nuclear plant releases gas to fix issue: French firm

SOLAR DAILY
Singapore exchange aims to boost tainted carbon markets

UK not adapting fast enough to climate risks: experts

Deep decarbonization by 2050 currently not plausible

S.Africa intensifies power cuts as winter demand climbs

SOLAR DAILY
Forest degradation primary driver of carbon loss in the Brazilian Amazon

Brazilian Amazon deforestation hits record for May

Brazil leader promises Yanomami no unwanted mining on their lands

Brazil environment minister probed for timber trafficking









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.