NUS researchers create novel device that harnesses shadows to generate electricity by Staff Writers Singapore (SPX) May 22, 2020
Shadows are often associated with darkness and uncertainty. Now, researchers from the National University of Singapore (NUS) are giving shadows a positive spin by demonstrating a way to harness this common but often overlooked optical effect to generate electricity. This novel concept opens up new approaches in generating green energy under indoor lighting conditions to power electronics. A team from the NUS Department of Materials Science and Engineering as well as NUS Department of Physics created a device called a shadow-effect energy generator (SEG), which makes use of the contrast in illumination between lit and shadowed areas to generate electricity. Their research breakthrough was reported in scientific journal Energy and Environmental Science on 15 April 2020. "Shadows are omnipresent, and we often take them for granted. In conventional photovoltaic or optoelectronic applications where a steady source of light is used to power devices, the presence of shadows is undesirable, since it degrades the performance of devices. In this work, we capitalised on the illumination contrast caused by shadows as an indirect source of power. The contrast in illumination induces a voltage difference between the shadowed and illuminated sections, resulting in an electric current. This novel concept of harvesting energy in the presence of shadows is unprecedented," explained research team leader Assistant Professor Tan Swee Ching, who is from the NUS Department of Materials Science and Engineering. Mobile electronic devices such as smart phones, smart glasses and e-watches require efficient and continuous power supply. As these devices are worn both indoors and outdoors, wearable power sources that could harness ambient light can potentially improve the versatility of these devices. While commercially available solar cells can perform this role in an outdoor environment, their energy harvesting efficiency drops significantly under indoor conditions where shadows are persistent. This new approach to scavenge energy from both illumination and shadows associated with low light intensities to maximise the efficiency of energy harvesting is both exciting and timely. To address this technological challenge, the NUS team developed a low-cost, easy-to-fabricate SEG to perform two functions: (1) to convert illumination contrast from partial shadows castings into electricity, and (2) to serve as a self-powered proximity sensor to monitor passing objects.
Generating electricity using the 'shadow-effect' "When the whole SEG cell is under illumination or in shadow, the amount of electricity generated is very low or none at all. When a part of the SEG cell is illuminated, a significant electrical output is detected. We also found that the optimum surface area for electricity generation is when half of the SEG cell is illuminated and the other half in shadow, as this gives enough area for charge generation and collection respectively," said co-team leader Professor Andrew Wee, who is from the NUS Department of Physics. Based on laboratory experiments, the team's four-cell SEG is twice as efficient when compared with commercial silicon solar cells, under the effect of shifting shadows. The harvested energy from the SEG in the presence of shadows created under indoor lighting conditions is sufficient to power a digital watch (i.e. 1.2 V). In addition, the team also showed that the SEG can serve as a self-powered sensor for monitoring moving objects. When an object passes by the SEG, it casts an intermittent shadow on the device and triggers the sensor to record the presence and movement of the object.
Towards lower cost and more functionalities The NUS researchers are also looking at developing self-powered sensors with versatile functionalities, as well as wearable SEGs attached to clothing to harvest energy during normal daily activities. Another promising area of research is the development of low-cost SEG panels for efficient harvesting of energy from indoor lighting.
Efficient, 'green' quantum-dot solar cells exploit defects Los Alamos NM (SPX) May 19, 2020 Novel quantum dot solar cells developed at Los Alamos National Laboratory match the efficiency of existing quantum-dot based devices, but without lead or other toxic elements that most solar cells of this type rely on. "This quantum-dot approach shows great promise for a new type of toxic-element-free, inexpensive solar cells that exhibit remarkable defect tolerance," said Victor Klimov, a physicist specializing in semiconductor nanocrystals at Los Alamos and lead author of the report featured on ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |