Nanotubes illuminate the way to living photovoltaics by Staff Writers Lausanne, Switzerland (SPX) Sep 13, 2022
"We put nanotubes inside of bacteria," says Professor Ardemis Boghossian at EPFL's School of Basic Sciences. "That doesn't sound very exciting on the surface, but it's actually a big deal. Researchers have been putting nanotubes in mammalian cells that use mechanisms like endocytosis, that are specific to those kinds of cells. Bacteria, on the other hand, don't have these mechanisms and face additional challenges in getting particles through their tough exterior. Despite these barriers, we've managed to do it, and this has very exciting implications in terms of applications." Boghossian's research focuses on interfacing artificial nanomaterials with biological constructs, including living cells. The resulting "nanobionic" technologies combine the advantages of both the living and non-living worlds. For years, her group has worked on the nanomaterial applications of single-walled carbon nanotubes (SWCNTs), tubes of carbon atoms with fascinating mechanical and optical properties. These properties make SWCNTs ideal for many novel applications in the field of nanobiotechnology. For example, SWCNTs have been placed inside mammalian cells to monitor their metabolisms using near-infrared imaging. The insertion of SWCNTs in mammalian cells has also led to new technologies for delivering therapeutic drugs to their intracellular targets, while in plant cells they have been used for genome editing. SWCNTs have also been implanted in living mice to demonstrate their ability to image biological tissue deep inside the body.
Fluorescent nanotubes in bacteria: A first he two types of bacteria explored in the study, Synechocystis and Nostoc, belong to the Cyanobacteria phylum, an enormous group of bacteria that get their energy through photosynthesis - like plants. They are also "Gram-negative", which means that their cell wall is thin, and they have an additional outer membrane that "Gram-positive" bacteria lack. The researchers observed that the cyanobacteria internalized SWCNTs through a passive, length-dependent and selective process. This process allowed the SWCNTs to spontaneously penetrate the cell walls of both the unicellular Synechocystis and the long, snake-like, multicellular Nostoc. Following this success, the team wanted to see if the nanotubes can be used to image cyanobacteria - as is the case with mammalian cells. "We built a first-of-its-kind custom setup that allowed us to image the special near-infrared fluorescence we get from our nanotubes inside the bacteria," says Boghossian. Alessandra Antonucci, a former PhD student at Boghossian's lab adds: "When the nanotubes are inside the bacteria, you could very clearly see them, even though the bacteria emit their own light. This is because the wavelengths of the nanotubes are far in the red, the near-infrared. You get a very clear and stable signal from the nanotubes that you can't get from any other nanoparticle sensor. We're excited because we can now use the nanotubes to see what is going on inside of cells that have been difficult to image using more traditional particles or proteins. The nanotubes give off a light that no natural living material gives off, not at these wavelengths, and that makes the nanotubes really stand out in these cells."
"Inherited nanobionics" "When the bacteria divide, the daughter cells inherent the nanotubes along with the properties of the nanotubes," says Boghossian. "We call this 'inherited nanobionics.' It's like having an artificial limb that gives you capabilities beyond what you can achieve naturally. And now imagine that your children can inherit its properties from you when they are born. Not only did we impart the bacteria with this artificial behavior, but this behavior is also inherited by their descendants. It's our first demonstration of inherited nanobionics."
Living photovoltaics "Living" photovoltaics are biological energy-producing devices that use photosynthetic microorganisms. Although still in the early stages of development, these devices represent a real solution to our ongoing energy crisis and efforts against climate change. "There's a dirty secret in photovoltaic community," says Boghossian. "It is green energy, but the carbon footprint is really high; a lot of CO2 is released just to make most standard photovoltaics. But what's nice about photosynthesis is not only does it harness solar energy, but it also has a negative carbon footprint. "Instead of releasing CO2, it absorbs it. So it solves two problems at once: solar energy conversion and CO2 sequestration. And these solar cells are alive. You do not need a factory to build each individual bacterial cell; these bacteria are self-replicating. They automatically take up CO2 to produce more of themselves. This is a material scientist's dream." Boghossian envisions a living photovoltaic device based on cyanobacteria that have automated control over electricity production that does not rely on the addition of foreign particles. "In terms of implementation, the bottleneck now is the cost and environmental effects of putting nanotubes inside of cyanobacteria on a large scale." With an eye towards large-scale implementation, Boghossian and her team are looking to synthetic biology for answers: "Our lab is now working towards bioengineering cyanobacteria that can produce electricity without the need for nanoparticle additives. Advancements in synthetic biology allow us to reprogram these cells to behave in totally artificial ways. We can engineer them so that producing electricity is literally in their DNA."
Research Report:Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics
Purdue researchers suggest novel way to generate a light source made from entangled photons West Lafayette, IN (SPX) Sep 09, 2022 Entanglement is a strange phenomenon in quantum physics where two particles are inherently connected to each other no matter the distance between them. When one is measured, the other measurement is instantly a given. Researchers from Purdue University have proposed a novel, unconventional approach to generate a special light source made up of entangled photons. The team proposed a method to generate entangled photons at extreme-ultraviolet (XUV) wavelengths where no such source currently exists. ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |