Solar Energy News  
SOLAR DAILY
New multi-material solar cells set new efficiency standard
by Staff Writers
Toronto, Canada (SPX) Mar 10, 2020

Left to right: Postdoctoral fellows Erkan Aydin (KAUST), Yi Hou (University of Toronto) and Michele De Bastiani (KAUST) are part of an international team that has designed a new type of tandem solar cell. The device combines industry standard silicon manufacturing with new perovskite technology.

Researchers from the University of Toronto Engineering and King Abdullah University of Science and Technology (KAUST) have overcome a key obstacle in combining the emerging solar-harvesting technology of perovskites with the commercial gold standard - silicon solar cells. The result is a highly efficient and stable tandem solar cell, one of the best-performing reported to date.

"Today, silicon solar cells are more efficient and less costly than ever before," says Professor Ted Sargent, senior author on a new paper published in Science. "But there are limits to how efficient silicon can be on its own. We're focused on overcoming these limits using a tandem (two-layer) approach."

Like silicon, perovskite crystals can absorb solar energy to excite electrons that can be channeled into a circuit. But unlike silicon, perovskites can be mixed with liquid to create a 'solar ink' that can be printed on surfaces.

The ink-based manufacturing approach - known as solution processing - is already well-established in the printing industry, and therefore has the potential to lower the cost of making solar cells.

"Adding a layer of perovskite crystals on top of textured silicon to create a tandem solar cell is a great way to enhance its performance," says Yi Hou, postdoctoral fellow and lead author of the new paper. "But the current industry standard is based on wafers - thin sheets of crystalline silicon - that were not designed with this approach in mind."

Though they may look smooth, standard silicon wafers used for solar cells feature tiny pyramidal structures about two micrometres high. The uneven surface minimizes the amount of light that reflects off the surface of the silicon and increases overall efficiency, but also makes it difficult to coat a uniform layer of perovskites on top.

"Most previous tandem cells have been made by first polishing the silicon surface to make it smooth, and then adding the perovskite layer," says Hou. "That works, but at additional costs."

Hou and the rest of the team - including Sargent and KAUST Professor Stefaan De Wolf - took a different approach. They increased the thickness of the perovskite layer, making it high enough to cover both the peaks and the valleys created by the pyramidal structures.

The team discovered that the perovskites in the valleys generated an electrical field that separates the electrons generated in the perovskite layer from those generated in the silicon layer. This type of charge separation is beneficial because it increases the chances that excited charges will flow into the circuit rather than other parts of the cell.

The team further enhanced charge separation by coating the perovskite crystals in a 'passivation layer' made of 1-butanethiol, a common industrial chemical.

The tandem solar cells achieved an efficiency of 25.7 per cent, as certified by an independent, external laboratory, the Fraunhofer Institute for Solar Energy in Freiburg, Germany. This is among the highest efficiencies ever reported for this type of design. They were also stable, withstanding temperatures of up to 85 degrees Celsius for more than 400 hours without a significant loss of performance.

"The fact that we can do all this without modifying the silicon makes it a drop-in solution," says Hou. "Industry can apply this without having to make costly changes to their existing processes."

Hou and the team are continuing to work on improvements to the design, including increasing stability up to 1,000 hours, one industry benchmark.

"We're very proud of the record-setting performance this collaboration was able to achieve, but this is just the beginning," says Hou. "By overcoming a key limitation in tandem solar cells, we've set the stage for even larger gains."

"Our approach opens a door for the silicon-photovoltaic industry to fully exploit the great advances perovskite technology has made so far," says De Wolf. "This can bring photovoltaic panels with higher performance at low cost to market."

Research paper


Related Links
University Of Toronto Faculty Of Applied Science and Engineering
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
New type of indoor solar cells for smart connected devices
Uppsala, Sweden (SPX) Mar 05, 2020
In a future where most things in our everyday life are connected through the internet, devices and sensors will need to run without wires or batteries. In a new article in Chemical Science, researchers from Uppsala University present a new type of dye-sensitised solar cells that harvest light from indoor lamps. The Internet of Things, or IoT, refers to a network of physical devices and applications connected through the internet. It is estimated that by 2025, many facets of our lives will be media ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
KIST develops biofuel production process in cooperation with North American researchers

Plastic from wood

Can palm-oil biodiesel can reduce greenhouse gas emissions

Novel photocatalytic method converts biopolyols and sugars into methanol and syngas

SOLAR DAILY
Robots autonomously navigate underground in DARPA challenge

Pentagon adopts 'ethical principles' for artificial intelligence use

Pentagon adopts ethics for artificial intelligence use

EU seeks 'responsible' AI to dispel Big Brother fears

SOLAR DAILY
Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

Iberdrola will build its next wind farm in Spain with the most powerful wind turbine

UK looks to offshore wind for green energy transition

SOLAR DAILY
GM unveils long-range battery in fresh electric car push

VW ditches natural gas to focus on e-cars

Tesla resumes work on German plant after court ruling

Alphabet's Waymo raises $2.25 bn to rev up autonomous projects

SOLAR DAILY
High energy Li-Ion battery is safer for electric vehicles

Potassium metal battery emerges as a rival to lithium-ion technology

New study explains why superconductivity takes place in graphene

Scientists created an 'impossible' superconducting compound

SOLAR DAILY
Framatome opens new research and operations center and expands Intercontrole in Cadarache, France

Study analyzes impact of switch from nuclear power to coal, suggests directions for policy

GE Hitachi Progresses Vendor Design Review in Canada for BWRX-300 Small Modular Reactor

VTT develops a Small Modular Reactor for district heating

SOLAR DAILY
Daimler targets 20% cut in European CO2 output for 2020

Brexit and Its Impact on Green Energy Projects

Coronavirus outbreak slashes China carbon emissions: study

Extreme weather to overload urban power grids, study shows

SOLAR DAILY
Bushfires burned a fifth of Australia's forest: study

Ancient Australian trees face uncertain future under climate change

More than 60 percent of Myanmar's mangroves has been deforested in the last 20 years

Hurricanes benefit mangroves in Florida's Everglades, study finds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.