New process boosts efficiency of bifacial CIGS thin film solar cell by Staff Writers Dubendorf, Switzerland (SPX) Dec 18, 2022
The idea is as straightforward as it is simple: If I can collect both direct sunlight as well as its reflection via the rear end of my solar cell, this should increase the yield of energy the cell produces. Potential applications are, for instance, building-integrated photovoltaics, agrivoltaics - the simultaneous use of areas of land for both photovoltaic power generation and agriculture - and vertically or high-tilt installed solar modules on high-altitude grounds. Enter the bifacial solar cell. According to the International Technology Roadmap of Photovoltaics, bifacial solar cells could capture a market share of 70% of the overall photovoltaics market by 2030. Although bifacial solar cells based on silicon wafers are already on the market, thin film solar cells have so far lagged behind. This is, at least in part, due to the rather low efficiency of bifacial CIGS thin film solar cells caused by a critical bottleneck problem: For any bifacial solar cell to be able to collect reflected sunlight at the rear side, an optically transparent electrical contact is a prerequisite. This is achieved by using a transparent conductive oxide (TCO) that replaces the opaque back contact in conventional - i.e. mono-facial - solar cells made of molybdenum.
A detrimental oxide formation The highest values achieved so far in a single cell are 9.0% for the front side and 7.1% for the rear side. "It's really difficult to have a good energy conversion efficiency for solar cells with both front and rear transparent conducting contacts", says Ayodhya N. Tiwari, who leads Empa's Thin Film and Photovoltaics lab. So, PhD student Shih-Chi Yang in the group of Romain Carron in Tiwari's lab developed a new low-temperature deposition process that should produce much less of the detrimental gallium oxide - ideally none at all. They used a tiny amount of silver as a secret ingredient of sorts to lower the melting point of the CIGS alloy and to obtain absorber layers with good electronic properties at just 350 degrees deposition temperature. And sure enough, when they analyzed the multilayer structure with high-resolution transmission electron microscopy, with the help of Tiwari's former postdoc Tzu-Ying Lin, currently at National Tsing Hua University in Taiwan, the team could not detect any gallium oxide at the interface at all.
The ambitious goal: an energy yield of more than 33% What's more, the team also succeeded in fabricating, for the very first time, a bifacial CIGS solar cell on a flexible polymer substrate, which - due to their light weight and flexibility - widens the spectrum of potential applications. And finally, the researchers combined two photovoltaic technologies - CIGS and perovskite solar cells - to produce a bifacial "tandem" cell. According to Tiwari, bifacial CIGS technology has the potential to yield energy conversion efficiencies beyond 33%, thus opening up further opportunities for thin film solar cells in the future. Tiwari is right now trying to establish a collaborative effort with key labs and companies across Europe to expedite the technology development and its industrial manufacturability on a larger scale.
Economical eco-friendly fabrication of high efficiency chalcopyrite solar cells Incheon, South Korea (SPX) Dec 18, 2022 Clean, sustainable energy solutions are essential to meet the ever-increasing energy demands of the human population. High efficiency solar cells are promising candidates to reduce carbon emissions and achieve carbon neutrality. In this regard, solution-processed copper indium gallium sulfur diselenide solar cells (CIGSSe) solar cells have generated significant interest owing to their excellent photovoltaic properties, such as high absorption of visible light, stability, and tunable bandgap. Howev ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |