New solar forecasting model performs best by Staff Writers Uppsala, Sweden (SPX) Jul 03, 2020
A new mathematical model for predicting variations in solar irradiance has been developed at Uppsala University. It may help to promote more efficient use of electricity from solar energy. In tests of various data models, the model proved capable of making highly reliable forecasts, and emerged as the best for this purpose in some respects. The results have now been published in two articles in the journal Solar Energy. As clouds pass overhead, solar power generation from a photovoltaic system fluctuates from one minute to the next. Local producers of their own solar energy (for a single property, for example) wishing want to adjust their electricity use according to supply may need to know, in detail, how the amount of sunlight is changing. Forecasts of solar irradiance (the amount of solar radiation reaching a given surface, measured in watts per square metre, W/m2) may be a way of achieving greater control of solar power production. Project leader Joakim Munkhammar of the Department of Civil and Industrial Engineering at Uppsala University explains. "Our 'MCM model', as it's called, serves to predict what will happen in the next minute, hour or day, based on what usually follows a particular solar irradiance level. This model has a simple design, is easy to train and use, and provides surprisingly accurate solar irradiance forecasts." The model, presented to the scientific community last year, is based on a "hidden Markov model" - that is, a statistical model for recognition and probabilistic forecasting of processes and patterns. The MCM (Markov chain mixture) distribution model divides solar irradiance into levels and calculates the probabilities of sunlight in the next and subsequent time periods being at the various levels. On this basis, it is possible to forecast when, and between which levels, sunlight will vary, and to compare the forecasts with actual observations to see how well the former match reality. The model has now been tested by both scientists who have worked on it previously and other researchers. This has included test runs to compare the model with several other models. In one study, in which the model and five established benchmark models (used for comparison, to evaluate the relative performance of new models) were tested, the new MCM model yielded the most reliable forecasts, especially for the near future. The Uppsala researchers now hope it will be feasible to use their model to control technical systems. "We look forward to working with other scientists and companies on testing the model with real physical systems, such as those for battery energy storage. We're going to try and boost the cost-effectiveness of storage systems by adjusting the charge, based on forecasts of local solar power generation," Munkhammar says.
Research Report: "Benchmark probabilistic forecasts: Characteristics and recommendations"
Sigora Solar, Partners Deliver Win For Homeowners In Long-Running Battle With HOA Richmond VA (SPX) Jun 26, 2020 Sigora Solar helped deliver a major win for homeowners in Powhatan in a long-running battle with their neighborhood homeowners association. Sigora Solar began the installation of an 18 kw system Monday that will reduce the Desmet family's electricity bill by as much as 94% and save them over $55,000 over the next 25 years. Dina and Dave Desmet's initial application to install solar panels on their home was denied as their homeowner's association sought to change the neighborhood bylaws on solar in ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |