Solar Energy News  
SOLAR DAILY
New technique boosts efficiency, sustainability of large-scale perovskite solar cells
by Staff Writers
Raleigh NC (SPX) Jan 26, 2022

An international team of researchers has demonstrated a technique that allows them to produce perovskite photovoltaic materials on an industrial scale, without sacrificing performance.

An international team of researchers has demonstrated a technique for producing perovskite photovoltaic materials on an industrial scale, which will reduce the cost and improve the performance of mass-produced perovskite solar cells.

The technique is low-cost, simple, energy-efficient, and should pave the way for creating perovskite solar cells. Perovskite is of interest for solar cells because it absorbs light very efficiently. This allows for the creation of lightweight, flexible solar cells that can be incorporated into a range of technologies, such as the windows of buildings or vehicles.

"In the lab, researchers produce perovskite photovoltaic materials using a technique called spin coating, which creates a thin film of perovskite on a substrate - but only on a small scale," says Aram Amassian, co-corresponding author of a paper on the work and a professor of materials science and engineering at North Carolina State University.

"We're talking about sample substrates that are only one or two centimeters square. However, people didn't think it was possible to scale spin-coating up for manufacturing, using substrates that are tens of centimeters square. Instead, people have opted for a variety of other methods. But these other methods produce perovskite photovoltaics that don't perform as well as the thin films made using spin coating and required significant research and development."

"What we've done here is demonstrate that you can produce perovskite photovoltaics on larger substrates using spin coating by designing a co-solvent dilution strategy," says Michael Gratzel, co-corresponding author of the paper and a professor at Ecole Polytechnique Federale de Lausanne. "In other words, you can scale up production of photovoltaics and preserve the excellent performance of almost any type of perovskite thin film produced using spin coating."

Historically, people thought spin coating could not be used to produce perovskite photovoltaics on industrial-scale substrates in a material-efficient way because of the nature of both spin coating and perovskites.

Spin coating involves placing a liquid on the surface of a substrate and then spinning the substrate, so that the liquid material spreads across the surface. However, when perovskite is applied using this technique, the solvents that keep the perovskite in a liquid state don't evaporate quickly enough. This causes much of the perovskite to fly off the edges, meaning a lot of the perovskite material is wasted. It also results in irregular thickness of the perovskite on the surface, as well as some areas of the perovskite taking longer than others to dry. All of which is problematic from a manufacturing standpoint.

"Our approach tackles this challenge by introducing a co-solvent that allows the liquid perovskite to spread evenly and dry very quickly and uniformly," says Hong Zhang of Ecole Polytechnique Federale de Lausanne, who is a co-lead author on the paper.

The new technique also significantly reduces waste and, by extension, reduces toxic byproducts associated with manufacturing perovskite photovoltaics.

"The beauty of this technique is that many industries already use spin coating technologies to produce all sorts of products," says Aldo Di Carlo, co-corresponding author of the paper and a professor at the University of Rome Tor Vergata. "Our work demonstrates that these existing technologies could be used to create perovskite solar cells. This could really accelerate the production and deployment of perovskite solar panels and cells."

Collaborators on the demonstration project are already using the new technique to produce modules that are tens of centimeters across with excellent uniformity and performance.

"My team is now focused on using process automation and artificial intelligence to build on this work and further improve efficiency, stability and sustainability of perovskite photovoltaics," Amassian says. "We're hoping to work with public and private sector interests on finding ways to implement this work and accelerate the development of perovskite solar cell technologies."

Research Report: "A Universal Co-Solvent Dilution Strategy Enables Facile and Cost-Effective Fabrication of Perovskite Photovoltaics"


Related Links
North Carolina State University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Five Reasons Why Certain Solar Salesmen Are Better Than Others
West Caldwell NJ (SPX) Jan 25, 2022
When you are trying to sell solar solutions to people and to businesses, it is vital that you know exactly how best to approach it to ensure that you are as likely as possible to find success with it. The truth is that being a solar salesperson can be quite tricky to get right. But chances are, you are driven by a genuine desire to help people and businesses, while also trying to make the planet a better place to be, so it is worth knowing how to improve as a solar salesperson. Here are some of the reas ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Getting hydrogen out of banana peels

LSU chemists unlock the key to improving biofuel and biomaterial production

Scientists build bioreactors and engineer bacteria to advance biofuel research

Creating sustainable material from waste

SOLAR DAILY
Kirigami robotic grippers are delicate enough to lift egg yolks

Enabling artificial intelligence on satellites

Researchers teach a robotic arm to autonomously push and pick random objects

Carnegie Mellon-led team to develop robotics to service satellites and build structures

SOLAR DAILY
Owl wing design reduces aircraft, wind turbine noise pollution

Earth, wind and reindeer: Lapland herders see red over turbines

Earth, wind and reindeer: Lapland herders see red over turbines

'Ocean battery' targets renewable energy dilemma

SOLAR DAILY
Bentley says first luxury electric car due 2025

Tesla reports record profit, sees more supply chain woes in 2022

GM to spend $7 bn in Michigan to build electric auto capacity

Volkswagen hits 2021 EU emissions target after 2020 miss

SOLAR DAILY
Researchers achieve burning plasma regime for first time in lab

First hydride superionic conductor developed, implications for sustainable energy

New experiment results bolster potential for self-sustaining fusion

How a smart electric grid will power our future

SOLAR DAILY
Japan to help with Bill Gates' next-gen nuclear power project

Sweden approves plan to bury nuclear waste

Britain injects 100m pounds into Sizewell C nuclear project

Iran says in talks with Russia to build nuclear power units

SOLAR DAILY
EU ministers mull climate policy, carbon border tax

EU nations quarrel over whether nuclear, gas are 'green'

World risks more years of high energy prices, emissions: IEA

Idaho researchers unveil enhanced electric power grid test bed

SOLAR DAILY
Land battle awaits Indigenous communities over Indonesia capital relocation: NGO

Just what is a 'resilient' forest, anyway?

US announces historic $1.1 bn investment for Everglades rehabilitation

Rising atmospheric CO2 concentrations globally affect photosynthesis of peat-forming mosses









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.