Perovskite solar cells: Perfection not required by Staff Writers Berlin, Germany (SPX) Jan 17, 2018
Metal-organic perovskite layers for solar cells are frequently fabricated using the spin coating technique on industry-relevant compact substrates. These perovskite layers generally exhibit numerous holes, yet attain astonishingly high levels of efficiency. The reason that these holes do not lead to significant short circuits between the front and back contact has now been discovered by a HZB team headed by Dr.-Ing. Marcus Baer in cooperation with the group headed by Professor Henry Snaith (Oxford University) at BESSY II. The early metal-organic perovskites exhibited efficiency levels of only a few per cent (2.2 per cent in 2006). That changed quickly, however: the record level now lies considerably above 22 per cent. The equivalent efficiency increase in the current commercially dominant silicon solar cell technology took more than 50 years. The fact that thin films made of low cost metal-organic perovskites can be produced on a large scale for example by spin coating and subsequently baking (whereby the solvent evaporates and the material crystallizes), makes this technology additionally attractive.
Holes in the perovskite film
Thin layer is built up "We were able to show that the substrate was not really exposed even in the holes, but instead a thin layer is being built up essentially as a result of the deposition and crystallization processes there that apparently prevents short circuits", explains doctoral student Claudia Hartmann.
.. and prevents short circuits "The electron transport layer (TiO2) and the transport material for positive charge carriers (Spiro MeOTAD) do not actually come into direct contact. In addition, the recombination barrier between the contact layers is sufficiently high that the losses in these solar cells is minute despite the many holes in the perovskite thin-film", says Bar.
Golden CO (SPX) Jan 10, 2018 Models of the U.S. electricity sector are relied upon by sector stakeholders and decision makers, but the recent surge in variable renewable energy (VRE), such as wind and solar, led a team of modeling experts to examine how these models would represent scenarios with high penetrations of VRE. Four agencies, including the U.S. Department of Energy's National Renewable Energy Laboratory (NR ... read more Related Links Helmholtz-Zentrum Berlin fur Materialien und Energie All About Solar Energy at SolarDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |