Perovskite solar cells get an upgrade by Staff Writers Houston TX (SPX) Nov 06, 2019
Rice University scientists believe they've overcome a major hurdle keeping perovskite-based solar cells from achieving mainstream use. Through the strategic use of the element indium to replace some of the lead in perovskites, Rice materials scientist Jun Lou and his colleagues at the Brown School of Engineering say they're better able to engineer the defects in cesium-lead-iodide solar cells that affect the compound's band gap, a critical property in solar cell efficiency. As a side benefit, the lab's newly formulated cells can be made in open air and last for months rather than days with a solar conversion efficiency slightly above 12%. The Rice team's results appear in Advanced Materials. Perovskites are crystals with cubelike lattices that are known to be efficient light harvesters, but the materials tend to be stressed by light, humidity and heat. Not the Rice perovskites, Lou said. "From our perspective, this is something new and I think it represents an important breakthrough," he said. "This is different from the traditional, mainstream perovskites people have been talking about for 10 years - the inorganic-organic hybrids that give you the highest efficiency so far recorded, about 25%. But the issue with that type of material is its instability. "Engineers are developing capping layers and things to protect those precious, sensitive materials from the environment," Lou said. "But it's hard to make a difference with the intrinsically unstable materials themselves. That's why we set out to do something different." Rice postdoctoral researcher and lead author Jia Liang and his team built and tested perovskite solar cells of inorganic cesium, lead and iodide, the very cells that tend to fail quickly due to defects. But by adding bromine and indium, the researchers were able to quash defects in the material, raising the efficiency above 12% and the voltage to 1.20 volts. As a bonus, the material proved to be exceptionally stable. The cells were prepared in ambient conditions, standing up to Houston's high humidity, and encapsulated cells remained stable in air for more than two months, far better than the few days that plain cesium-lead-iodide cells lasted. "The highest efficiency for this material may be about 20%, and if we can get there, this can be a commercial product," Liang said. "It has advantages over silicon-based solar cells because synthesis is very cheap, it's solution-based and easy to scale up. Basically, you just spread it on a substrate, let it dry out, and you have your solar cell."
New technique lets researchers map strain in next-gen solar cells Seattle WA (SPX) Nov 01, 2019 People can be good at hiding strain, and we're not alone. Solar cells have the same talent. For a solar cell, physical strain within its microscopic crystalline structure can interrupt its core function - converting sunlight into electricity - by essentially "losing" energy as heat. For an emerging type of solar cell, known as lead halide perovskites, reducing and taming this loss is key to improving efficiency and putting the perovskites on par with today's silicon solar cells. In order to unders ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |