Solar Energy News  
SOLAR DAILY
Photosynthesis copycat may improve solar cells
by Staff Writers
Ann Arbor MI (SPX) Sep 07, 2022

The diagram shows light hitting the semiconductor (purple) layered over the mirror-like photonic structure. The polaritons-mixtures of light, electrons and "holes"-then travel to the detector (truncated disc), where they generate current. IMAGE: Xinjing Huang and Bin Liu, Optoelectronic Components and Materials Group, University of Michigan.

A relatively new kind of semiconductor, layered atop a mirror-like structure, can mimic the way that leaves move energy from the sun over relatively long distances before using it to fuel chemical reactions. The approach may one day improve the efficiency of solar cells.

"Energy transport is one of the crucial steps for solar energy harvesting and conversion in solar cells," said Bin Liu, a postdoctoral researcher in electrical and computer engineering and first author of the study in the journal Optica.

"We created a structure that can support hybrid light-matter mixture states, enabling efficient and exceptionally long-range energy transport."

One of the ways that solar cells lose energy is in leakage currents generated in the absence of light. This occurs in the part of the solar cell that takes the negatively charged electrons and the positively charged "holes," generated by the absorption of light, and separates them at a junction between different semiconductors to create an electrical current.

In a conventional solar cell, the junction area is as large as the area that collects light, so that the electrons and holes don't have to go far to reach it. But the drawback is the energy loss from those leakage currents.

Nature minimizes these losses in photosynthesis with large light-gathering "antenna complexes" in chloroplasts and the much smaller "reaction centers" where the electrons and holes are separated for use in sugar production. However, these electron-hole pairs, known as excitons, are very difficult to transport over long distances in semiconductors.

Liu explained that photosynthetic complexes can manage it thanks to their highly ordered structures, but human-made materials are typically too imperfect.

The new device gets around this problem by not converting photons fully to excitons-instead, they maintain their light-like qualities. The photon-electron-hole mixture is known as a polariton. In polariton form, its light-like properties allow the energy to quickly cross relatively large distances of 0.1 millimeters, which is even further than the distances that excitons travel inside leaves.

The team created the polaritons by layering the thin, light-absorbing semiconductor atop a photonic structure that resembles a mirror, and then illuminating it. That part of the device acts like the antenna complex in chloroplasts, gathering light energy over a large area. With the help of the mirror-like structure, the semiconductor funneled the polaritons to a detector, which converted them to electric current.

"The advantage of this arrangement is that it has the potential to greatly enhance the power generation efficiency of conventional solar cells where the light gathering and charge separating regions coexist over the same area," said Stephen Forrest, the Peter A. Franken Distinguished University Professor of Engineering, who led the research.

While the team knows that the transport of energy is happening in their system, they aren't totally sure that the energy is continuously moving in the form of a polariton. It could be that the photon sort of surfs over a series of excitons on the way to the detector. They leave this fundamental detail to future work, as well as the question of how to build efficient light-gathering devices that harness the photosynthesis-like energy transfer.

The study was funded by the Army Research Office and Universal Display Corporation, and Universal Display Corporation has licensed the technology and filed a patent application. Forrest and the University of Michigan have a financial interest in Universal Display Corp.

Forrest is also the Paul G. Goebel Professor of Engineering and a professor of electrical engineering and computer science, material science and engineering and physics.

Research Report:Photocurrent generation following long-range propagation of organic exciton-polaritons


Related Links
University of Michigan
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Major leap for stable high-efficiency perovskite solar cells
Linkoping, Sweden (SPX) Sep 07, 2022
Solar cells manufactured from materials known as "perovskites" are catching up with the efficiency of traditional silicon-based solar cells. At the same time, they have advantages of low cost and short energy payback time. However, such solar cells have problems with stability - something that researchers at Linkoping University, together with international collaborators, have now managed to solve. The results, published in Science, are a major step forwards in the quest for next-generation solar cells. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Turning fish waste into quality carbon-based nanomaterial

Brazilian scientists reveal method of converting methane gas into liquid methanol

MSU researchers create method for breaking down plant materials for earth-friendly energy

Solar-powered chemistry uses CO2 and H2O to make feedstock for fuels, chemicals

SOLAR DAILY
Solar-powered cyborg cockroaches could rescue humans, study says

AI that can learn the patterns of human language

A simpler path to supercharge robotic systems

New chip ramps up AI computing efficiency

SOLAR DAILY
Europe and China operate the largest number of offshore wind farms

A new method boosts wind farms' energy output, without new equipment

Modern wind turbines can more than compensate for decline in global wind resource

End-of-life plan needed for tens of thousands of wind turbine blades

SOLAR DAILY
Californians told not to charge EVs as grid struggles in heat wave

ESA technology for safer, smarter European roads

Plenty of roadblocks for automakers seeking EV success

Musk envisions ties with China partners

SOLAR DAILY
SwRI demonstrates small-scale pumped heat energy storage system

New stable quantum batteries can reliably store energy into electromagnetic fields

How do molecular motors convert chemical energy in to mechanical work?

A new concept for low-cost batteries

SOLAR DAILY
Germany's nuclear stay fails to quell debate

Zaporizhzhia: the nuclear power plant caught in the war in Ukraine

Turkey offers to mediate in Ukraine nuclear plant standoff

UN watchdog urges security zone at Ukraine nuclear plant

SOLAR DAILY
Berlin tech show facing up to era of energy scarcity

Fossil fuel investment in Africa dwarfs clean air funding

African countries to stand by 1.5C target at climate talks talks

G20 talks end with pledge to accelerate energy transition

SOLAR DAILY
Scandals, Covid, deforestation: Brazil under Bolsonaro

Want to save carbon and land? Study suggests wooden cities

Zapped survivors: Some tropical trees won't be defeated by lightning

Heatwave triggers 'false autumn' in UK









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.