Solar Energy News  
SOLAR DAILY
Plasmon-induced trap filling at grain boundaries in perovskite solar cells
by Staff Writers
Changchun, China (SPX) Nov 02, 2021

a-c, Theoretical calculations of molecular interactions using density functional theory (DFT). d, Schematic diagram of defect filling mechanism in Au@PAT/MAPbI3.

Recently, organic-inorganic halide perovskite (OIHP) solar cells have become one of the most appealing research topics. Due to their ionic nature, intrinsic defects, such as vacancies and non-coordinated ions at their grain boundaries (GBs) and surfaces, remain one of the interesting material characteristics that underpin limitations in device operation and restrict further progress towards the theoretical limit. Previously, traditional passivation methods, like coordinate bonding or ionic bonding, have been proposed to neutralize and de-activate deep level traps.

Besides, the coupling between plasmonic nanostructures and semiconductor materials is considered as an effective strategy to solve some inherent problems in traditional semiconductor materials. Through the decay of localized surface plasmon resonances in metallic nanostructures, the energy stored in a surface plasmon can be transferred either via a radiative path or a nonradiative path by generating hot carriers.

However, report of introducing plasmonic nanostructures into perovskite polycrystalline films for improving their optoelectronic characteristic is rare, and the role of plasmonic nanostructures in perovskite solar cells is still controversial. The reason is due to two aspects: firstly, the high light absorption coefficient of perovskite materials basically requires no additional light absorption enhancement. Secondly, the bare metal nanostructures tend to act as the recombination centre of free charge, while the coated metal nanostructures will reduce the efficiency of energy transfer.

In a new paper published in Light Science and Application, a team of scientists, led by associate professor Kai Yao of Nanchang University, professor Haitao Huang of Hong Kong Polytechnic University, and associate professor Dangyuan Lei have designed a novel core-shell plasmonic metal nanostructure to greatly enhance their coupling with perovskite material, and based on this scheme, researchers reveal that plasmon-induced hot carriers generated in metals can effectively fill the deep level trap states of perovskite material at the grain boundaries.

The researchers firstly synthesised ~20 nm gold nanospheres by citrate reduction and then coated them with a ~2 nm conductive polyaniline (PAT) layer. The core-shell nanostructures (Au@PAT) can be well dispersed in the perovskite precursor solution (Figure 1a). Researchers found that Au@PAT are enriched at the grain boundaries of perovskite film (Figure 1b). By comparing the photovoltaic properties of MAPbI3 devices doped with Au@PAT (Target) and PAT (Control), the researchers find that the PCE of devices doped with Au@PAT increased by 20%.

Besides, they also find the incorporation of this core-shell metal nanoparticles is a universal strategy. When these plasmonic nanoparticles are incorporated into double-cation or multi-cation perovskite films, the device performance is also significantly improved. In addition to an increase in photo-generated current, significant improvements in open circuit voltage and filling factor are also observed.

Excluding the change of crystallization characteristics, the improvement in device performance is mainly attributed to the improved electrical properties of the perovskite film. The results of PL mapping and scanning near-Field optical microscope (SNOM) (Figure 1c and 1d) reveal that the defects at GBs of the perovskite polycrystalline film are significantly passivated after the addition of Au@PAT. Moreover, the PL intensity of the whole perovskite film is increased and become more uniform. In addition, the electric field intensity at the grain boundary is also significantly improved after the incorporation of Au@PAT at the GBs.

What is the underlying mechanism for this enhancement? To answer this question, the researchers tested the variation of defect concentration in perovskite devices before and after Au@PAT doping under both illumination and dark states. As shown in Figure 1e and 1f, compared to "control" devices, there is significant difference in carrier behaviour Au@PAT doped perovskite films in dark and light condition, confirming that the related defect filling is induced by plasmonic effect, not just the nanostructure itself.

Under illumination, the relatively positive local changes in photophysics are consistent with the results derived from the GB regions on the microscopic level, playing a critical role in the reduction of deep trap densities. It manifests that the deep-level trap occupation induced by Au@PAT may lead to a longer charge carrier lifetime and lower SRH recombination rate in the device that enhances the FF and VOC.

In order to further understand the mechanism of Au@PAT passivation of defects, transient absorption spectroscopy (TA) was applied to analyse the dynamic process of carrier recombination in perovskite devices. The TA results identify the possibility of plasmon-induced hot carrier transfer from plasmonic nanoparticles to the conduction band of MAPbI3. The wavelength dependence of photo-induced absorption (PIA) signals further supports the process. The transfer of thermal electrons from metal Au to perovskite was further analysed using density functional theory (DFT) calculations (Figure 2a-c).

The results show that the PAT shell is crucial to ensure the strong coupling between plasmonic and perovskite materials. In this case, hot carriers generated in metals can be transferred from the plasmonic nanostructure into the perovskite material quickly and efficiently, thus filling the deep level defect of the perovskite material at the GBs (Figure 2d). Although this primary investigation is not exhaustive in terms of all possible contribution and direct observation of deep-trap filling in PSCs, it does highlight the effect of plasmonic resonances on metal/perovskite heterostructure.

In summary, selection of appropriate materials and design of optimized plasmonic coupling are in urgent need to control these interfacial effects for realizing the high-performance perovskite devices, which invites future intense research activities.

Research paper


Related Links
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Sunny but isolated, Cyprus toils to boost green energy
Nicosia (AFP) Nov 2, 2021
"We have 340 sunny days per year," Georgia Mouskou said, as sunlight streamed through her windows. "But we're still not betting on renewable energies in Cyprus." Faced with her skyrocketing electricity bill, Mouskou says she wants to "rent a plot" to install solar panels. Like Mouskou, rising energy costs and environmental concerns have caused residents of the east Mediterranean island to see solar power as an obvious option. In the past year, the number of solar panels increased by 16 perce ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Aircraft can get higher and greener from doped fuels

First A319neo flight with 100 percent sustainable aviation fuel

Biofilters designed for space convert liquid manure into high-quality fertilisers

Crucial step identified in the conversion of biomass to methane

SOLAR DAILY
Teaching robots to think like us

LEONARDO, the Bipedal Robot, Can Ride a Skateboard and Walk a Slackline

One giant leap for the mini cheetah

Surgical robot with DLR technology on the market

SOLAR DAILY
Scientists bring efficiency to expanding offshore wind energy

From oil to renewables, winds of change blow on Scottish islands

US unveils plans for seven major offshore wind farms

Large wind farms cause different effects for local and regional climates

SOLAR DAILY
Amazon-backed EV startup aims for valuation above $50 bn

Making self-driving cars human-friendly

How robots can rule roads

Self-driving race cars make history in Indianapolis

SOLAR DAILY
New Curtin study solves energy storage and supply puzzle

NREL researchers point toward energy efficiency instead of long-term storage

To convert heat into electricity: Scientists developed an efficient generator

New catalyst helps combine fuel cell, battery into one device

SOLAR DAILY
Framatome to provide cybersecurity services for a nuclear facility safety technology project

Steam leak detected at Russian nuclear plant

EDF offers to build up to 6 nuclear reactors in Poland

UK seeks to oust China from Sizewell nuclear plant: FT

SOLAR DAILY
Industry must prepare now for a new world of green electricity

India to hit net-zero climate target by 2070: Modi

UK to unveil plan for first 'net zero' financial centre

Turkey's Erdogan skips Glasgow climate conference

SOLAR DAILY
Deployment of giant reflector for forest monitoring satellite Biomass

Brazil plans combative strategy for climate talks

Blinken, in Colombia, unveils Amazon deforestation pact

Ashes from Amazon transformed into city mural to raise climate awareness









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.