Solar Energy News  
SOLAR DAILY
Polluted wastewater in the forecast? Try a solar umbrella
by Staff Writers
Berkeley CA (SPX) Jan 08, 2020

In a conventional evaporation pond (left), incoming sunlight is absorbed, causing a bulk water temperature increase that leads to evaporation. With Berkeley Lab's proposed solar umbrella, incoming sunlight is converted into mid-infrared radiation, where water is strongly absorbing, thereby increasing surface temperature and evaporation rate while the bulk remains at a lower temperature.

Evaporation ponds, which are commonly used in many industries to manage wastewater, can span acres, occupying a large footprint and often posing risks to birds and other wildlife. Yet they're an economical way to deal with contaminated water because they take advantage of natural evaporation under sunlight to reduce large volumes of dirty water to much smaller volumes of solid waste.

Now researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated a way to double the rate of evaporation by using solar energy and taking advantage of water's inherent properties. The study, led by Berkeley Lab scientists Akanksha Menon and Ravi Prasher, is reported in the journal Nature Sustainability.

Evaporation ponds are used at power plants, desalination plants, in the oil and gas industry, and also for lithium extraction, in which lithium-rich brine is pumped into vast, man-made salt ponds. They're common in China, Australia, Europe, the Middle East, and parts of the United States where the climate is suitable (arid or semi-arid with a lot of sunshine), and these ponds can be the size of hundreds of football fields, with many of them sitting side by side.

"This is a big societal problem we're trying to solve. To either dispose of the wastewater or to extract a valuable salt like lithium, you would like to increase the evaporation rate dramatically and in a scalable manner," said Prasher, an expert in thermal energy who also serves as Berkeley Lab's associate director for the Energy Technologies Area. "If we could do so, that could reduce their environmental impact by reducing the amount of land required."

To maximize water recovery from industrial wastewater and desalination brine, there has been a push to achieve "zero liquid discharge" so that the final waste is a solid. The process involves a series of treatment steps, and the last step is frequently an evaporation pond. Menon, a Berkeley Lab postdoctoral fellow, notes that many ideas have been proposed to use solar energy to speed up the rate of evaporation.

"There have been several papers published in the last five years," she said. "Most involve sunlight-absorbing structures that float on the water's surface, like a black sponge, to localize the heat, since evaporation is a surface phenomenon."

Unfortunately such porous structures tend to get clogged up with the very contaminants that they're trying to separate. "So over time, the performance of the floating absorbers drops dramatically," Menon said. "Sometimes the salts will get stuck on the surface and will reflect sunlight rather than absorbing it."

Transforming the wavelength of sunlight
The Berkeley Lab researchers looked for a solution that could avoid such issues. "We realized if you look at the properties of water, it has very strong absorption in the mid-infrared wavelength range," Menon said. "If you shine mid-infrared light on water, it'll absorb it so strongly it retains all of that heat in a very thin layer."

The team decided to build a device they liken to a "radiation transformer," which takes energy from sunlight in the range of 400 to 1,500 nanometers and converts it to 3,000 nanometers or greater, which is in the mid-infrared range.

The Berkeley Lab scientists demonstrated the concept in the lab using a saturated solution of table salt. In their experiment, their prototype device enhanced the evaporation rate by more than 100% over natural evaporation. They add that there is the potential to increase evaporation by 160% by optimizing the thermal design.

Their photo-thermal device - a flat sheet that selectively absorbs solar energy on one side and emits mid-infrared energy on the other - sits above the water in an evaporation pond like an umbrella. "A site may have an array of these solar umbrellas, likely sitting on tent posts, about a foot or so above the water," said Menon.

The researchers noted that such solar umbrellas could also play a role in desalination plants, which are emerging as a solution for growing water demand around the world, but disposal of the by-product - concentrated brine - remains a problem. Berkeley Lab leads the National Alliance for Water Innovation (NAWI), which was awarded the $100-million Energy-Water Desalination Hub by DOE earlier this year.

"If you're going to do large-scale desalination, one of the biggest challenges is how to come up with scalable technologies," Prasher said. "This is potentially is a highly scalable zero-liquid discharge technology, which doesn't require any energy because it's based on solar energy."

Prasher said the team next wants to pursue two directions. The first is to do a techno-economic analysis for both lithium extraction and zero-liquid discharge for desalination plants to better understand the costs. The second is to look at making the device out of a polymer or other material to further reduce the cost.

Research paper


Related Links
DOE/Lawrence Berkeley National Laboratory
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Tests measure solar panel performance beyond established standards
Washington DC (SPX) Jan 07, 2020
Photovoltaics used in solar panels are sensitive to environmental factors and often suffer degradation over time. International Electrotechnical Commission standards for accelerated degradation do not include field tests. While some testing facilities have made data available, much of the data needed to make business decisions for PV is not available publicly. In testing solar panels, the sun's intensity, the spectral composition and the angle of light are important factors in understanding why ce ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
NREL, Co-Optima research yields potential bioblendstock for diesel fuel

Neutrons optimize high efficiency catalyst for greener approach to biofuel synthesis

Big step in producing carbon-neutral fuel Silver diphosphide

NREL, Co-Optima research yields potential bioblendstock for diesel fuel

SOLAR DAILY
Space history is made in this NASA robot factory

Church of England questions ethics of investment in AI

Insects' drag-based flight mechanism could improve tiny flying robots

Researchers call for harnessing, regulation of AI

SOLAR DAILY
Consider marine life when implementing offshore renewable power

Supporting structures of wind turbines contribute to wind farm blockage effect

Saving bats from wind turbine death

DTEK reaches 1 GW of renewable energy generation capacity in Ukraine

SOLAR DAILY
UK car sales hit six-year low in 2019: industry body

Tesla reports solid Q4 auto deliveries, extending streak

E-car sales in Norway reach new record high

Barcelona bans older, most polluting cars

SOLAR DAILY
Powder, not gas: A safer, more effective way to create a star on Earth

Monash develops world's most efficient lithium-sulfur battery

First Long Duration, Liquid Air Energy Storage System in the United States

NYSERDA announces battery storage project for town of Ulster, replacing previously planned fossil fuel plant

SOLAR DAILY
Uranium chemistry and geological disposal of radioactive waste

In first, Switzerland shuts down ageing nuclear power station

Green-finance deal survives EU split on nuclear

Russian nuclear-powered giant icebreaker completes test run

SOLAR DAILY
Study reveals global sustainability efforts play out on local level

Eastern EU states opposed to 2050 zero-emissions goal

Germany signs off on flagship climate plan

Germany issue 1st green bonds; Dutch court orders govt to slash emissions

SOLAR DAILY
385-million-year-old tree root reveals world's oldest modern forest

Heavily logged tropical forests may never recover

Megadroughts fueled Peruvian cloud forest activity

Siberian researchers contribute to global monitoring of the Earth's Green Lungs









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.