Solar Energy News
ENERGY TECH
Porous silicon oxide electrodes advance sustainable energy storage solutions
illustration only
Porous silicon oxide electrodes advance sustainable energy storage solutions
by Riko Seibo
Tokyo, Japan (SPX) Dec 16, 2024

Lithium-ion batteries (LIBs) are indispensable in modern devices, from smartphones to electric vehicles and renewable energy systems. Yet, challenges such as limited durability and the use of toxic liquid electrolytes necessitate advancements in battery technology. Aiming to address these issues, researchers have been investigating all-solid-state batteries as a potential alternative for over a decade.

Despite their promise, silicon-based all-solid-state batteries have faced significant hurdles. The repetitive expansion and contraction of the silicon electrode during charge/discharge cycles generates mechanical stress, causing the electrode to crack and detach from the solid electrolyte, leading to a decline in performance.

A research team led by Professor Takayuki Doi of Doshisha University has proposed a potential solution. Their recent study, published in *ACS Applied Materials and Interfaces* on October 29, 2024, examines the introduction of pores into silicon oxide (SiOx) electrodes to mitigate these mechanical stresses. Collaborating with Dr. Kohei Marumoto of Doshisha University and Dr. Kiyotaka Nakano from Hitachi High-Tech Corporation, the team explored the performance of porous SiOx electrodes in all-solid-state cells.

The team fabricated the electrodes using radiofrequency sputtering, incorporating Li-La-Zr-Ta-O (LLZTO) as a solid electrolyte. Advanced scanning electron microscopy revealed that porous SiOx electrodes outperformed their non-porous counterparts during repeated charge/discharge cycles.

"Non-porous SiOx partially exfoliated from the LLZTO electrolyte by the 20th cycle, which was consistent with the drastic decline in capacity and rise in internal resistance we observed," says Dr. Doi. "In contrast, though the initially observed pore structure of porous SiOx collapsed through repeated expansion and contraction, the remaining pores still served as a buffer against the internal and interfacial stresses. This ultimately helped maintain the interfacial joint between the electrode and the electrolyte."

A significant achievement of the research is the ability to fabricate thicker SiOx electrodes. While conventional silicon electrodes require thicknesses below one micrometer to prevent cracking, porous SiOx electrodes achieved stable performance at 5 um. This improvement results in an energy density 17 times higher than that of traditional non-porous silicon electrodes, significantly enhancing space efficiency by enabling greater energy storage per unit volume.

The study emphasizes the broader implications of this innovation. Porous silicon oxide electrodes could pave the way for more efficient and safer all-solid-state batteries, benefiting applications ranging from electric vehicles to large-scale energy storage. "We expect the results of our research to make a multifaceted contribution towards sustainable development goals, not only in terms of climate change countermeasures based on the reduction of carbon emissions, but also in terms of economic growth and urban development," adds Dr. Doi.

The findings also highlight areas for further exploration, particularly in optimizing the porous structures of SiOx electrodes to achieve peak performance. This progress represents a significant step toward a sustainable future powered by advanced energy storage technologies.

Research Report:Tailored Design of a Nanoporous Structure Suitable for Thick Si Electrodes on a Stiff Oxide-Based Solid Electrolyte

Related Links
Doshisha University
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Existing EV batteries may last significantly longer under real-world conditions
Los Angeles CA (SPX) Dec 13, 2024
Electric vehicle (EV) batteries subjected to typical real-world driving scenarios-such as heavy traffic, urban commutes, and long highway trips-could last up to 40% longer than previously projected, according to new research from the SLAC-Stanford Battery Center, a collaboration between Stanford University's Precourt Institute for Energy and SLAC National Accelerator Laboratory. This finding suggests EV owners may delay the costly replacement of battery packs or the purchase of new vehicles for several ... read more

ENERGY TECH
IATA chief says sustainable plane fuel supply not enough

From chip shop grease to efficient fuel alternative

A new catalyst can turn methane into something useful

Liquid Sun secures funding to scale sustainable aviation fuel production

ENERGY TECH
ChatGPT search opens to all users in challenge to Google

Researchers demonstrate new technique for stealing AI models

BalBot stability enhanced by design tweaks to mass and ball size

Google unveils latest AI model, Gemini 2.0

ENERGY TECH
BP to 'significantly reduce' renewables investment

Baltic Sea wind farms impair Sweden's defence, says military

Sweden blocks 13 offshore wind farms over defence concerns

Sweden's defence concerned by planned offshore wind power

ENERGY TECH
China's Baidu, Geely say 'huge changes' in EV landscape behind cuts

Malaysia launches first locally made electric vehicle

Chinese firms take on EV truck challenges

EU conservatives seek to stall 2035 combustion engine ban

ENERGY TECH
Transforming fusion from a scientific curiosity into a powerful clean energy source

Fusion advances with innovative stellarator research

Improving fusion plasma predictions with multi-fidelity data science models

Battery-like memory withstands extreme heat for future applications

ENERGY TECH
GE Vernova SMR reactor advances to Step 2 of UK regulatory approval process

Teletrix launches commercial AR platform for advanced radiation training

Framatome partners with Japan on sodium-cooled fast reactor development

Australia's opposition says nuclear plan cheaper than renewables

ENERGY TECH
Iran extends school closures in Tehran amid fuel shortages

Russia says 'massive' strike on Ukraine a response to Kyiv's ATACMS use

Brazil trumpets emission cut plans at UN top court

Earning money while supporting power grid stability

ENERGY TECH
After decades of plantation agriculture, coconut palms dominate over half of Pacific atoll forests

Cambodian journalist investigating illegal logging shot dead

Mangroves save $855 billion in flood protection globally, new study shows

Beeches thrive in France's Verdun in flight from climate change

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.