Print perovskite solar cells by Staff Writers Wuhan, China (SPX) Jul 27, 2021
To reach the target of carbon neutral, a transition from fossil energy to renewable energy generation is indispensable. Photovoltaic technology is considered as one of the most prominent sources of renewable energy. For decades, about 90% of global solar cell market has been dominated by silicon solar cells. Although the price of silicon solar panels decreases year by year, it is a big challenge to significantly reduce its manufacturing cost further. Hence, next-generation photovoltaic technologies are in urgent need of new materials and novel techniques. Recently, metal halide perovskite solar cells (PSCs) have attracted extensive attention from both academia and industry, due to their excellent photoelectric conversion efficiency and great commercial potential. Metal halide perovskite materials can be easily synthesized in solution at low-temperature and deposited into thin-film through a variety of printing method. Recently, many reviews have been published on the topic of perovskite film deposition techniques/mechanisms, such as solvent engineering and additives-engineering, whereas discussions about ink engineering for printing high-quality perovskite films as well as other function layers are few. In this article, the authors provide a systematical overview of applicable printing technologies that can be possibly used for scaling-up PSCs. The authors consider the ink engineering is the key issue to achieve high quality thin films for efficient solar cells. Therefore, they mainly focus on the perspective of perovskite precursor ink formula and additives on controlling the film formation process. They analyze the potential physical and chemical mechanisms of the nucleation and crystallization process during the printing. For the additives in the printing of PSCs, the authors discuss the effect of additives for the film formation process, the microstructure and defect population. Moreover, they also present the technical feasibility of printing the other layers besides perovskite layers, including hole transporting layers (HTL) and electron transporting layers (ETL), which might enable a rapid and mass production of PSCs. Finally, they introduce the recent progress of roll-to-roll (R2R) printing and the stability issues of perovskite modules, and give a prospect of mass production of perovskite solar modules in the near future.
Research Report: "Pringting strategies for scaling up perovskite solar cells"
Japan ups 2030 renewables goal in draft energy policy Tokyo (AFP) July 21, 2021 Japan aims to hike its 2030 renewable energy target as part of efforts to slash emissions, according to draft documents released Wednesday, but activists described the planned goal as "disappointing". The blueprint of the nation's energy policy sets a higher target of 36-38 percent of power supplies coming from renewable sources such as solar and wind by fiscal 2030 - up from the current goal of 22-24 percent. Major firms including Sony, Panasonic and Nissan had in January called for the govern ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |