Rapid preparation of CdSe thin-film solar cells by Staff Writers Huazhong, China (SPX) Jan 12, 2022
Si-based tandem solar cell is regarded as the most promising strategy to break the theoretical efficiency limit of single-junction Si solar cells. With Si as the bottom cells, the optimal bandgap of top cells is 1.7 eV, which enables high efficiency of ~45% for two-junction tandem solar cells. III-V semiconductors/Si and perovskites/Si tandem solar cells have achieved high efficiency of ~30%, proving the feasibility. However, the stability challenges of perovskite and the high-cost problem of III-V semiconductors largely limit their wide applications. Exploring new stable, low-cost, and bandgap 1.7 eV photovoltaic materials is of great significance in science and broad prospects in technology. Cadmium selenide (CdSe), a binary II-VI semiconductor, enjoys great potential in the application of Si-based tandem solar cells because of the suitable bandgap of ~1.7 eV, excellent optoelectronic properties, high stability, and low manufacturing cost. Nevertheless, the progress of CdSe thin-film solar cells stays 30 years ago, and there are few systematic studies on CdSe thin-film solar cells in recent years. Professor Tang Jiang and his team proposed a method of rapid thermal evaporation (RTE) to obtain high-quality CdSe thin films and designed CdSe thin-film solar cells. This study entitled "Rapid thermal evaporation for cadmium selenide thin-film solar cells" was published in Frontiers of Optoelectronics on Dec. 6, 2021. In this study, the RTE was employed to deposit CdSe thin films, which demonstrate high crystal quality with large grain size and preferred crystal orientation. Meanwhile, the sharp absorption edge at 720 nm indicates CdSe thin film with a direct bandgap of 1.72 eV. The strong photoluminescence with full width at half maximum of 23 nm reveals the CdSe thin films with relatively few defects. Based on the high-quality CdSe thin films, suitable electron transport layer (ETL) and hole transport layer (HTL) were introduced to construct CdSe solar cells. Finally, an efficiency of 1.88% was achieved by designing an optimal configuration of FTO/ZnO/CdS/CdSe/PEDOT/CuI. This study developed, for the first time, a RTE method to deposit CdSe thin films and provided a systematical characterization of the optoelectric properties. Also, it demonstrated general rules for device design and optimization for CdSe solar cells. It also pointed out the advantages of CdSe thin film and its solar cells. In the future, CdSe solar cells are of high potential in Si-based tandem applications, which is worthy of further study.
Research Report: "Rapid thermal evaporation for cadmium selenide thin-film solar cells"
Germany to speed up green energy projects in 'gigantic' effort Frankfurt (AFP) Jan 11, 2022 Germany's Climate and Energy minister Robert Habeck on Tuesday pledged to drastically ramp up renewable energy projects in the coming years, saying the country faced a "gigantic" task to meet climate protection goals. Germany needs to become "more efficient and faster" in the fight against climate change, Green party minister Habeck said, as he unveiled an ambitious package of measures to help make Europe's top economy carbon neutral by 2045. Among the most eye-catching proposals was the pledge ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |