Researchers Develop Golden Window Electrodes For Organic Solar Cells
Warwick UK (SPX) Apr 07, 2011 Researchers at the University of Warwick have developed a gold plated window as the transparent electrode for organic solar cells. Contrary to what one might expect, these electrodes have the potential to be relatively cheap since the thickness of gold used is only 8 billionths of a metre. This ultra-low thickness means that even at the current high gold price the cost of the gold needed to fabricate one square metre of this electrode is only around 4.5 pounds. It can also be readily recouped from the organic solar cell at the end of its life and since gold is already widely used to form reliable interconnects it is no stranger to the electronics industry. Organic solar cells have long relied on Indium Tin Oxide (ITO) coated glass as the transparent electrode, although this is largely due to the absence of a suitable alternative. ITO is a complex, unstable material with a high surface roughness and tendency to crack upon bending if supported on a plastic substrate. If that wasn't bad enough one of its key components, indium, is in short supply making it relatively expensive to use. An ultra-thin film of air-stable metal like gold would offer a viable alternative to ITO, but until now it has not proved possible to deposit a film thin enough to be transparent without being too fragile and electrically resistive to be useful. Now research led by Dr Ross Hatton and Professor Tim Jones in the University of Warwick 's department of Chemistry has developed a rapid method for the preparation of robust, ultra-thin gold films on glass. Importantly this method can be scaled up for large area applications like solar cells and the resulting electrodes are chemically very well-defined. Dr Hatton says "This new method of creating gold based transparent electrodes is potentially widely applicable for a variety of large area applications, particularly where stable, chemically well-defined, ultra-smooth platform electrodes are required, such as in organic optoelectronics and the emerging fields of nanoelectronics and nanophotonics" The paper documents the team's success in creating this simple, practical and effective method of depositing the films onto glass, and also reports how the optical properties can be fine tuned by perforating the film with tiny circular holes using something as simple as polystyrene balls. The University of Warwick research team has also had some early success in depositing ultra-thin gold films directly on plastic substrates, an important step towards realising the holy grail of truly flexible solar cells. This innovation is set to be exploited by Molecular Solar Ltd, a Warwick spinout company dedicated to commercialising the discoveries of its academic founders in the area of organic solar cells. The full research paper entitled Ultrathin Transparent Au Electrodes for Organic Photovoltaics Fabricated Using a Mixed Mono-Molecular Nucleation Layer is published in Advanced Functional Materials.
Share This Article With Planet Earth
Related Links University of Warwick All About Solar Energy at SolarDaily.com
Japan nuclear scare boosts renewables lobby Singapore (AFP) April 6, 2011 A global scare sparked by Japan's stumbling efforts to contain a nuclear crisis is encouraging promoters of renewable energy, but defenders of atomic power insist it has a long-term future. Until the giant earthquake and tsunami that struck northeastern Japan on March 11 damaged the Fukushima plant, nuclear power was emerging as one of the main choices for countries looking at cleaner, alter ... read more |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |