Solar Energy News
SOLAR DAILY
Researchers develop a new source of quantum light
Microscopic imaging shows the size uniformity of the perovskite nanocrystals. Image: Courtesy of the researchers MIT.
Researchers develop a new source of quantum light
by David L. Chandler for MIT News
Boston MA (SPX) Jun 23, 2023

Using novel materials that have been widely studied as potential new solar photovoltaics, researchers at MIT have shown that nanoparticles of these materials can emit a stream of single, identical photons.

While the work is currently a fundamental discovery of these materials' capabilities, it might ultimately pave the way to new optically based quantum computers, as well as possible quantum teleportation devices for communication, the researchers say. The results appear in the journal Nature Photonics, in a paper by graduate student Alexander Kaplan, professor of chemistry Moungi Bawendi, and six others at MIT.

Most concepts for quantum computing use ultracold atoms or the spins of individual electrons to act as the quantum bits, or qubits, that form the basis of such devices. But about two decades ago some researchers proposed the idea of using light instead of physical objects as the basic qubit units. Among other advantages, this would eliminate the need for complex and expensive equipment to control the qubits and enter and extract data from them. Instead, ordinary mirrors and optical detectors would be all that was needed.

"With these qubit-like photons," Kaplan explains, "with just 'household' linear optics, you can build a quantum computer, provided you have appropriately prepared photons."

The preparation of those photons is the key thing. Each photon has to precisely match the quantum characteristics of the one before, and so on. Once that perfect matching is achieved, "the really big paradigm shift then is changing from the need for very fancy optics, very fancy equipment, to needing just simple equipment. The thing that needs to be special is the light itself."

Then, Bawendi explains, they take these single photons that are identical and indistinguishable from each other, and they interact them with each other. That indistinguishability is crucial: If you have two photons, and "everything is the same about them, and you can't say number one and number two, you can't keep track of them that way. That's what allows them to interact in certain ways that are nonclassical."

Kaplan says that "if we want the photon to have this very specific property, of being very well-defined in energy, polarization, spatial mode, time, all of the things that we can encode quantum mechanically, we need the source to be very well-defined quantum mechanically as well."

The source they ended up using is a form of lead-halite perovskite nanoparticles. Thin films of lead-halide perovskites are being widely pursued as potential next-generation photovoltaics, among other things, because they could be much more lightweight and easier to process than today's standard silicon-based photovoltaics.

In nanoparticle form, lead-halide perovskites are notable for their blindingly fast cryogenic radiative rate, which sets them apart from other colloidal semiconductor nanoparticles. The faster the light is emitted, the more likely the output will have a well-defined wavefunction. The fast radiative rates thus uniquely position lead-halide perovskite nanoparticles to emit quantum light.

To test that the photons they generate really do have this indistinguishable property, a standard test is to detect a specific kind of interference between two photons, known as Hong-Ou-Mandel interference. This phenomenon is central to a lot of quantum-based technologies, Kaplan says, and therefore demonstrating its presence "has been a hallmark for confirming that a photon source can be used for these purposes."

Very few materials can emit light that meets this test, he says. "They pretty much can be listed on one hand." While their new source is not yet perfect, producing the HOM interference only about half the time, the other sources have significant issues with achieving scalability. "The reason other sources are coherent is they're made with the purest materials, and they're made individually one by one, atom by atom. So, there's very poor scalability and very poor reproducibility," Kaplan says.

By contrast, the perovskite nanoparticles are made in a solution and simply deposited on a substrate material. "We're basically just spinning them onto a surface, in this case just a regular glass surface," Kaplan says. "And we're seeing them undergo this behavior that previously was seen only under the most stringent of preparation conditions."

So, even though these materials may not yet be perfect, "They're very scalable, we can make a lot of them. and they're currently very unoptimized. We can integrate them into devices, and we can further improve them," Kaplan says.

At this stage, he says, this work is "a very interesting fundamental discovery," showing the capabilities of these materials. "The importance of the work is that hopefully it can encourage people to look into how to further enhance these in various device architectures."

And, Bawendi adds, by integrating these emitters into reflective systems called optical cavities, as has already been done with the other sources, "we have full confidence that integrating them into an optical cavity will bring their properties up to the level of the competition."

The research team included Chantalle Krajewska, Andrew Proppe, Weiwei Sun, Tara Sverko, David Berkinsky, and Hendrik Utzat. The work was supported by the U.S. Department of Energy and the Natural Sciences and Engineering Research Council of Canada.

Research Report:"Hong-Ou-Mandel Interference in Colloidal CsPbBr3 Perovskite Nanocrystals"

Related Links
MIT Department of Chemistry
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
NSU perovskite solar cells set new record for power conversion efficiency
Singapore (SPX) Jun 23, 2023
Perovskite solar cells designed by a team of scientists from the National University of Singapore (NUS) have attained a world record efficiency of 24.35% with an active area of 1 cm2. This achievement paves the way for cheaper, more efficient and durable solar cells. To facilitate consistent comparisons and benchmarking of different solar cell technologies, the photovoltaic (PV) community uses a standard size of at least 1 cm2 to report the efficiency of one-sun solar cells in the "Solar Cell Effi ... read more

SOLAR DAILY
New technology will let farmers produce their own fertilizer and e-fuels

Clean, sustainable fuels made 'from thin air' and plastic waste

In Iowa, Asa Hutchinson touts measured approach to green energy transition

Carbon mitigation payments can make bioenergy crops more appealing for farmers

SOLAR DAILY
Will AI really destroy humanity?

'Don't steal our voices': dubbing artists confront AI threat

Rise of the cute robots

Singapore to put more police robots on the streets

SOLAR DAILY
New transmission line to carry wind energy electricity from Wyoming to Nevada

Brazil faces dilemma: endangered macaw vs. wind farm

Spire to provide TrueOcean with weather forecasts for offshore wind farm development

Sweden greenlights two offshore windpower farms

SOLAR DAILY
Strange bedfellows: auto rivals embrace Tesla EV chargers

VW eyes sales growth powered by US, China

European leaders host Musk, chase Tesla investment

GM reaches deal for access to Tesla's North American chargers

SOLAR DAILY
Towards efficient lithium-air batteries with solution plasma-based synthesis of perovskite hydroxide catalysts

Nobel-winning lithium battery inventor John Goodenough dies at 100

Ford-backed electric battery venture approved for $9.2bn US loan

How tidal range electricity generation could meet future demand and storage problems

SOLAR DAILY
Ukraine warns against 'panic' after alleged nuclear threat

Framatome selected by US nuclear power plant to provide incore instrumentation

UN nuclear chief says situation 'serious' at Ukraine plant

UN visit to Ukraine nuclear plant delayed: Russia

SOLAR DAILY
Big ideas but small steps at climate finance summit

The global search for cooling: an energy-demanding loop

Big ideas, small steps at climate finance summit

UK criticised for slow implementation of climate commitments

SOLAR DAILY
Football pitch of tropical forest lost every 5 seconds

Green growth in Amazon would bring Brazil billions: study

Latin America bank eyes finance 'umbrella' role for Amazon rainforest

With bows and spears, Indigenous 'warriors' defend the Amazon

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.