Solar Energy News  
SOLAR DAILY
Scientists fabricate novel electrical component to improve stability of solar cells
by Staff Writers
Nagoya, Japan (SPX) Mar 13, 2022

stock image only

In the future, decarbonized societies that use internet of things (IoT) devices will become commonplace. But to achieve this, we need to first realize highly efficient and stable sources of renewable energy. Solar cells are considered a promising option, but their electrical contacts suffer from a 'tradeoff' relationship between surface passivation and conductivity. Recently, researchers from Japan have developed a new type of electrical contact that can overcome this problem.

The most recent type of commercial photovoltaic cell (solar cell) uses stacked layers of crystalline silicon (c-Si) and an ultrathin layer of silicon oxide (SiOx) to form an electrical contact. The SiOx is used as a 'passivating' film-an unreactive layer that improves the performance, reliability, and stability of the device.

But that does not mean that simply increasing the thickness of this passivating layer will lead to improved solar cells. SiOx is an electrical insulator and there is a trade-off relationship between passivation and the conductivity of the electrical contact in solar cells.

In a new study, published in ACS Applied Nano Materials, a research team led by Assistant Professor Kazuhiro Gotoh and Professor Noritaka Usami from Nagoya University has developed a novel SiOx layer that simultaneously allows high passivation and improved conductivity. Named NAnocrystalling Transport path in Ultrathin dielectrics for REinforcing passivating contact (NATURE contact), the new electrical contact consists of three-layer structures made up of a layer of silicon nanoparticles sandwiched between two layers of oxygen-rich SiOx.

"You can think of a passivating film as a big wall with gates in it. In the NATURE contact, the big wall is the SiOx layer and the gates are Si nanocrystals," explains Dr. Gotoh.

The conductivity of the electrical contact in solar cells is dependent on the formation of a 'carrier pathway' for the transport of electronic charges. The formation of this electrical pathway is dependent upon a high temperature treatment called 'annealing.'

Previous research has shown that SiOx contacts that contain silicon nanoparticles as a carrier pathway can achieve good electrical properties. In the NATURE contact, the annealing process leads to the formation of very small silicon nanocrystals in the passivation layer that are nearly spherical in shape. The diameter of these nanocrystals corresponds to the thickness of the passivation layer. Thus, by controlling the annealing conditions, the diameter and subsequent thickness of the passivation layer can be adjusted.

The research team fabricated NATURE contacts and then subjected them to varying annealing conditions. Upon studying the contacts with transmission electron microscopy, they discovered that silicon nanocrystals were formed in the contact at an annealing temperature of 750C.

They also investigated the electrical properties of the contact. They saw that compared to existing contacts such as the tunnel oxide passivating contact (TOPCon) or polysilicon on the oxide (POLO) contacts, the NATURE had comparable values of contact resistance and 'recombination current,'-a phenomenon that causes current and voltage losses in solar cells and decreases their efficiency.

"The NATURE contact overcomes the trade-off relationship between the protective ability and conductivity of passivating films. This development will lead to the realization of future building-integrated photovoltaics (BIPV) and vehicle-integrated photovoltaics (VIPV) and help us achieve zero-energy buildings and solar cars in future decarbonized societies," concludes Dr. Gotoh.

Research Report: "Silicon Nanocrystals Embedded in Nanolayered Silicon Oxide for Crystalline Silicon Solar Cells"


Related Links
Nagoya University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
How to clean solar panels without water
Boston MA (SPX) Mar 13, 2022
Solar power is expected to reach 10 percent of global power generation by the year 2030, and much of that is likely to be located in desert areas, where sunlight is abundant. But the accumulation of dust on solar panels or mirrors is already a significant issue - it can reduce the output of photovoltaic panels by as much as 30 percent in just one month - so regular cleaning is essential for such installations. But cleaning solar panels currently is estimated to use about 10 billion gallons of wate ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Generating carbon-free fuels

New, nature-inspired concepts for turning CO2 into clean fuels

Basis for next-gen bioprocesses

Scientists use "green" solvent and natural pigment to produce bioplastic

SOLAR DAILY
The next generation of robots will be shape-shifters

The benefits of peripheral vision for machines

Developing algorithms that make decisions aligned with human experts

Injecting fairness into machine-learning models

SOLAR DAILY
US offshore wind power lease sale nets record $4.3 bn

More than $1.5 bn bid so far in US offshore wind auction

Offshore wind farms reshape the North Sea

Turbine 'torture' for Greek islanders as wind farms proliferate

SOLAR DAILY
Ford to introduce 7 new EVs in Europe by 2024, invest $2B in EV plant

China's ride-hailing giant Didi to halt Hong Kong listing: report

US announces new emissions standards for trucks and buses

Sony and Honda plan joint electric vehicle firm

SOLAR DAILY
UCF and NASA researchers design charged 'power suits' for electric vehicles and spacecraft

New paper offers innovative solution for thermal energy storage

Magnetism helps electrons vanish in high-temp superconductors

Blowing dust to cool fusion plasmas

SOLAR DAILY
Russia engineers inspect seized Ukraine nuclear plant

Finland's long-delayed nuclear reactor goes online

Russia, Ukraine 'ready to work' with UN nuclear watchdog

Chernobyl power cut, transmission lost at Europe's largest atomic plant: IAEA

SOLAR DAILY
The road to renewable energy in Japan, a top CO2 emitter

Will Ukraine war help or hinder green energy transition?

CO2 emissions from energy sector rise by record 2 bn tonnes in 2021: IEA

Study reveals small-scale renewables could cause power failures

SOLAR DAILY
Brazil stars protest Bolsonaro environmental policy

Amazon rainforest is losing resilience: New evidence from satellite data analysis

Stora Enso suspends Russia forestry operations

New study shows that Earth's coldest forests are shifting northward with climate change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.