Scientists find ways to help perovskite solar cell "self-healing" by Staff Writers Hefei, China (SPX) Jan 01, 2022
A team led by Prof. HU Linhua at the Hefei Institutes of Physical Science of the Chinese Academy of Sciences (CAS) has recently developed a type of self-healing perovskite solar cell by functional combination of polyvinylpyrrolidone (PVP). Related results were published in Journal of Energy Chemistry. These solar cells have shown amazing humidity stability and self-healing behavior after 500 hours of operation, according to the researchers. Organic-inorganic hybrid perovskite solar cells are considered as a competitive alternative to conventional silicon solar cells. However, they are prone to degrade when exposed to air. Scientists have been working to make them stable and better self-healing to resist harsh operating environments. Air moisture is the key issue for perovskites. It invades the films and accelerates the damage of devices. Therefore, the researchers introduced PVP to the methylammonium lead iodide perovskite precursor. It can control crystal growth and endow the devices with self-healing ability in a moisture environment. PVP is a polymer with many carbonyl groups. When it was introduced in perovskite solar cells, it acted as a "protective armor with an automatic blood backflow effect" against water vapor. In addition, PVP can improve crystal growth with fewer defects and larger grains. This work was supported by the National Key Research and Development Program of China, the National Natural Science Foundation of China, and the West Light Foundation of CAS, etc.
Research Report: "Improved crystallinity and self-healing effects in perovskite solar cells via functional incorporation of polyvinylpyrrolidone"
Templating approach stabilizes 'ideal' material for alternative solar cells Cambridge UK (SPX) Jan 01, 2022 Researchers have developed a method to stabilise a promising material known as perovskite for cheap solar cells, without compromising its near-perfect performance. The researchers, from the University of Cambridge, used an organic molecule as a 'template' to guide perovskite films into the desired phase as they form. Their results are reported in the journal Science. Perovskite materials offer a cheaper alternative to silicon for producing optoelectronic devices such as solar cells and LEDs. ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |