Solar Energy News  
SOLAR DAILY
Scientists go deep to quantify perovskite properties
by Staff Writers
Houston TX (SPX) Jun 11, 2018

An artist's depiction of interacting electronic charges forming a strongly bound exciton trapped in an atomic-thick layer of hybrid perovskite.

Scientists led by Rice University and Los Alamos National Laboratory have discovered electronic properties in quantum-scale devices that are likely to impact the growing field of low-cost perovskite based optoelectronics.

In an open-access Nature Communications paper, researchers led by Los Alamos scientists Aditya Mohite and Jean-Christophe Blancon, both of whom will join Rice this summer, studied the behavior of excitons trapped in quantum wells made of crystalline, halide-based perovskite compounds.

As a result, they were able to create a scale by which labs can determine the binding energy of excitons, and thus the band gap structures, in perovskite quantum wells of any thickness. This could in turn aid in the fundamental design of next-generation semiconductor materials.

Perovskite quantum well-based optoelectronic devices convert and control light at the quantum scale, reactions below 100 nanometers that follow different rules from those dictated by classical mechanics.

Solar cells that turn light into electricity are optoelectronic devices. So are devices that turn electricity into light, including light-emitting diodes (LEDs) and the ubiquitous semiconductor lasers that power barcode readers, laser printers, disc players and other technologies. Any step toward maximizing their efficiency will have wide impact, according to the researchers.

The excitons at the center of their research are electrically neutral quasiparticles that only exist when electrons and electron holes bind in an insulating or semiconducting solid, like quantum wells used to trap the particles for study.

Quantum wells used in the study were synthesized by the Northwestern University lab of chemist Mercouri Kanatzidis and the Mohite Lab. They were based on perovskite compounds with a particular layered structure known as a Ruddlesden-Popper phase (RPP). This class of materials has unique electronic and magnetic properties and has found use in metal-air batteries.

"Understanding the nature of excitons and generating a general scaling law for exciton binding energy is the first fundamental step required for the design of any optoelectronic device, such as solar cells, lasers or detectors," said Mohite, who will become an associate professor of chemical and biomolecular engineering at Rice.

Previously, researchers discovered they could tune the resonance of excitons and free carriers within RPP perovskite layers by changing their atomic thickness. That appeared to change the mass of the excitons, but scientists could not measure the phenomenon until now.

"Varying the thickness of these semiconductors gave us a fundamental understanding of the quasi-dimensional, intermediate physics between monolayer 2D materials and 3D materials," said lead author Blancon, currently a research scientist at Los Alamos. "We achieved this for the first time in non-synthetic materials."

Los Alamos research scientist Andreas Stier tested the wells under a 60-tesla magnetic field to directly probe the effective mass of the excitons, a characteristic that is key for both modeling of the excitons and understanding energy transport in the 2D perovskite materials.

Bringing the samples to Rice allowed the researchers to expose them simultaneously to ultra-low temperatures, high magnetic fields and polarized light, a capability offered only by a unique spectroscope, the Rice Advanced Magnet with Broadband Optics (RAMBO), overseen by co-author and physicist Junichiro Kono.

Advanced optical spectroscopy carried out by Blancon at Los Alamos (a capability soon to be available at Rice in Mohite's lab) offered a direct probe of the optical transitions within the RPPs to derive the exciton binding energies, which is the basis of the breakthrough exciton scaling law with quantum well thickness described in the paper.

Matching their results to the computational model designed by Jacky Even, a professor of physics at INSA Rennes, France, the researchers determined that the effective mass of the excitons in perovskite quantum wells up to five layers is about two times larger than in their 3D bulk counterpart.

As they approached five layers (3.1 nanometers), Blancon said, the binding energy between electrons and holes was significantly reduced but still larger than 100 milli-electron volts, making them robust enough to exploit at room temperature. For example, he said, that would allow for the design of efficient light-emitting devices with color tunability.

The combined experimental and computer model data allowed them to create a scale that predicts exciton binding energy in 2D or 3D perovskites of any thickness. The researchers found that perovskite quantum wells above 20 atoms thick (about 12 nanometers) transitioned from quantum exciton to classical free-carrier rules normally seen in 3D perovskites at room temperature.

"This was a great opportunity for us to demonstrate the unique capabilities of RAMBO for use in high-impact materials research," Kono said. "With excellent optical access, this mini-coil-based pulsed magnet system allows us to perform various types of optical spectroscopy experiments in high magnetic fields up to 30 tesla."

The researchers noted that though the experiments were carried out at ultra-cold temperatures, what they observed should apply to room temperature as well.

"This work represents a fundamental and nonintuitive result where we determine a universal scaling behavior for exciton binding energies in Ruddlesden-Popper 2D hybrid perovskites," Mohite said. "This is a fundamental measurement that has remained elusive for several decades, but its knowledge is critical before the design of any optoelectronic devices based on this class of materials and may have implication in the future for design of, for example, zero-threshold laser diodes and multifunctional hetero-material for optoelectronics."

Research Report: "Light 'relaxes' crystal to boost solar cell efficiency"


Related Links
Rice University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
The blockchain project Solar DAO is to implement its first PV solar plants in Kazakhstan
Astana, Kazakhstan (SPX) Jun 01, 2018
GOTOSOLAR, a Solar DAO project operator and owner, is announcing the first PV solar plants implementation in Kazakhstan: 4 MW in the north-west area and 4 MW in the southern area. "We have studied about 30 projects with a single plant capacity from 500 kW to 10 MW in 15 countries around the world, being focused on the selection of projects at the 'ready to build' stage for further construction. Finally, we have made a difficult decision not to purchase project companies offered in the market ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Scientists sustainably 3D print large objects out of cellulose

Polymer researchers discover path to sustainable and biodegradable polyesters

'Deforestation-free' palm oil not as simple as it sounds

Advanced biofuels can be produced extremely efficiently, confirms industrial demonstration

SOLAR DAILY
Service Robotics Market worth over $22bn by 2024

'Smart' material enables novel applications in autonomous driving and robotics

Robotic assembly of the world's smallest house

Lu resignation a blow for Baidu's push into AI, analysts say

SOLAR DAILY
Cryptocurrency blowing in the wind as mine opens in Estonia

U.S. Atlantic states eye offshore wind leadership

European wind energy generation potential in a warmer world

New York to world's largest offshore wildlife aerial survey

SOLAR DAILY
MIT study helps driverless cars change lanes more like humans do

Self-driving cars must reduce traffic fatalities by at least 75 percent to stay on the roads

Fleet of autonomous boats could service cities to reduce road traffic

Germany orders recall of 60,000 Audis over emissions

SOLAR DAILY
Rutgers-led research could lead to more efficient electronics

Paving the way for safer, smaller batteries and fuel cells

Physicists use terahertz flashes to uncover state of matter hidden by superconductivity

New model sheds light on key physics of magnetic islands that halt fusion reactions

SOLAR DAILY
Fire in Chernobyl zone, Kiev says radiation levels safe

World first EPR nuclear reactor begins work in China

Ukraine puts out forest fire around Chernobyl

Prototype nuclear battery packs 10 times more power

SOLAR DAILY
Trump readies new plan to aid coal and nuclear power

Carbon dioxide emissions drop from U.S. power sector

Study highlights environmental cost of tearing down Vancouver's single-family homes

Bitcoin estimated to use half a percent of the world's electric energy by end of 2018

SOLAR DAILY
New research finds tall and older Amazonian forests more resistant to droughts

Zangbeto: voodoo saviour of Benin's mangroves

New technique reveals details of forest fire recovery

Forest loss in one part of US can harm trees on the opposite coast









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.