Solar Energy News  
SOLAR DAILY
Showtime for photosynthesis
by Staff Writers
Berkeley CA (SPX) Jun 05, 2020

A GIF of the structural changes of Photosystem II and its catalytic center (Mn4Ca cluster) during the water oxidation reaction. The movie shows the S2 to S3 transition step, where the first water (as shown in Ox) comes into the catalytic center after the photochemical reaction at the reaction center.

Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

"Life depends on the oxygen that plants and algae split from water; how they do it is still a mystery, but scientists, including our team, are slowly peeling away the layers to get to the answer," said Vittal K. Yachandra, co-lead author of a new study published in PNAS and a chemist senior scientist at the Department of Energy's (DOE) Lawrence Berkeley Laboratory (Berkeley Lab).

"If we can understand this step of natural photosynthesis, it would enable us to use those design principles for building artificial photosynthetic systems that produce clean and renewable energy from sunlight and water."

With an instrument that the team designed and fabricated, they analyzed photosynthetic proteins using both X-ray crystallography and X-ray emission spectroscopy. This dual approach, which the team pioneered and have been refining for the past 10 years, generates chemical and protein structure information from the same sample at the same time. The imaging was performed with the X-ray free-electron laser (XFEL) at the LCLS at SLAC National Laboratory, and at SACLA in Japan.

"With this technique, we get the overall picture of how the entire protein structure dynamically changes and we see the chemical intricacies occurring at the reaction site," said co-lead author Junko Yano, a chemist senior scientist in Berkeley Lab's Molecular Biophysics and Integrated Bioimaging (MBIB) Division. "The X-ray free electron laser produces extremely bright, short bursts of X-rays that allow us to not only analyze a protein at room temperature, which is how these reactions occur in nature, but also capture various moments over the reaction time scale."

Traditional crystallography methods often require the sample proteins to be frozen; consequently, they can only generate snapshots of static proteins. This limitation makes it difficult for scientists to get a handle on how proteins actually behave in living organisms, because the molecules morph between different physical states during chemical reactions.

"The water-splitting reaction in photosynthesis is a cyclical process that needs four photons and cycles between four stable 'states,'" said Yano. "Previously, we could only take pictures of these four states. But by taking multiple snapshots in time, we now can visualize how one state goes to the other."

"We saw, really nicely, how the structure changes step-by-step as it transforms from one state to the next state," said Jan F. Kern, MBIB chemist and co-author. "It is pretty exciting, because we can see the 'cause and effect' and the role that each moving atom plays in this transition."

Nicholas K. Sauter, co-author and MBIB computational senior scientist, added: "Essentially, we're trying to take a 'movie' of a chemical reaction. We made a lot of progress to get to this point, in terms of our technology and our computational analyses. The work of our co-author Paul Adams and others in MBIB was critical to interpreting the XFEL and X-ray data. But we still have to get the other frames to see how the reaction is completed and the enzyme is ready for the next cycle."

The Berkeley Lab researchers hope to continue the project once the many research sites that the entire international team relies upon - located in the U.S., Japan, Switzerland, and South Korea - are operating normally following the COVID-19 pandemic.

Kern concluded by noting that the technological milestone presented in this paper benefited greatly from the diverse expertise of the authors from SLAC, Uppsala and Umea Universities in Sweden, Humboldt University in Germany, and from the capabilities of five DOE Office of Science user facilities: the Stanford Synchrotron Radiation Lightsource and LCLS at Stanford University, and the Advanced Light Source, Energy Sciences Network, and National Energy Research Scientific Computing Center at Berkeley Lab.

Research paper


Related Links
Lawrence Berkeley National Laboratory
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Precision spray coating could enable solar cells with better performance and stability
Washington DC (SPX) Jun 04, 2020
Although perovskites are a promising alternative to the silicon used to make most of today's solar cells, new manufacturing processes are needed to make them practical for commercial production. To help fill this gap, researchers have developed a new precision spray-coating method that enables more complex perovskite solar cell designs and could be scaled up for mass production. Perovskites are promising for next-generation solar cells because they absorb light and convert it to energy with better ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Chemical recycling makes useful product from waste bioplastic

Researchers turn algae leftovers into renewable products with flare

Can renewable energy really replace fossil fuels?

Solve invasive seaweed problem by turning it into biofuels and fertilisers

SOLAR DAILY
Algorithm quickly simulates a roll of loaded dice

Denmark develops robot to conduct coronavirus tests

Next-generation cockroach-inspired robot is small but mighty

The concept of creating brain-on-chip revealed

SOLAR DAILY
US wind plants show relatively low levels of performance decline as they age

Wave, wind and PV: The world's first floating Ocean Hybrid Platform

Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

SOLAR DAILY
Southern California's Marengo Charging Plaza officially opens to the public

S. Korea's self-driving upstarts take on tech giants

Volkswagen invests 2 bn euros in Chinese electric vehicle sector

Top German court to rule on VW 'Dieselgate' compensation

SOLAR DAILY
An unusual choice of material yields incredibly long-lasting batteries

Surprise link found to edge turbulence in fusion plasma

Next-gen laser facilities look to usher in new era of relativistic plasmas research

Discovery about the edge of fusion plasma could help realize fusion power

SOLAR DAILY
Framatome completes acquisition of BWXT's US commercial nuclear services

Framatome to provide engineering services to EDF in the United Kingdom

EDF submits plans for controversial UK nuclear plant

General Atomics integrates nuclear division into Electromagnetics Systems Group

SOLAR DAILY
UK electricity plant nears full switch away from coal

World needs 'green recovery', health pros tell G20 leaders

Global CO2 emissions to drop 4-7% in 2020, but will it matter

New map highlights China's export-driven CO2 emissions

SOLAR DAILY
Tropical forests can handle the heat, up to a point

Uruguay renegotiates $3 bn pulp plant deal with Finland's UPM

With attention on virus, Amazon deforestation surges

Brazil to deploy army to fight Amazon deforestation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.