Solar Park offer higher yield across the same area by Staff Writers Karlsruhe, Germany (SPX) Oct 28, 2022
To achieve climate neutrality, use of renewable energy sources must be increased massively. "Large solar parks are very important in this connection," says Nina Munzke. The researcher at KIT's Institute of Electrical Engineering (ETI) initiated the Solar Park 2.0 project at KIT's Battery Technical Center. "However, it is a problem to find larger areas for such facilities in the densely populated regions of the world. To nevertheless reach our climate goals, available areas must be used far more efficiently." Within the Solar Park 2.0 project, researchers develop electronic components and methods for this purpose. "We want to increase the power output of photovoltaic facilities under unfavorable conditions, such as shade, dirt, or aging, and to optimize the efficiency and power yield," Munzke says.
Increased Yields by Novel Power Electronics However, the MPP changes with temperature, position of the sun, and other factors. Hence, optimum operation requires the voltage to be adjusted continuously. Specialized power optimizers are applied for this purpose. Still, maximum power point tracking (MPPT) in conventional circuits mainly takes place in the central inverter. "When several photovoltaic modules are connected in series or strings and several strings are connected in parallel, shading and failures of single modules reduce the power produced by the whole facility," Stefanski says. "It is more advantageous to control single modules and to optimize the voltage applied to the strings depending on the specific circuitry." For this purpose, the HiLEM (stands for High Efficiency Low Effort MPPT) circuit patented by KIT is applied in the Solar Park 2.0 project. This circuit replaces combiner boxes that are usually applied for the parallel connection of strings and enables an efficient MPPT on the string level. Combination of a HiLEM circuit with novel power optimizers developed jointly by Karlsruhe University of Applied Sciences and the companies of BRC and PREMA then allows for simultaneous MPPT on both the string and module levels. "This does not only increase the yield of the photovoltaic facility, but also the service life. At the same time, operation costs are reduced," Stefanski says.
Planned Test Facility on Campus North This method will then be used to identify possibly shaded, damaged, or dirty modules. "This will help us find out at which point of solar parks installation of power optimizers would be worthwhile," says Markus Becker from ETI. The AI is trained with long-term data from the existing solar park of Energy Lab 2.0 and data collected by the wireless monitoring system (WSN) developed by the Institute for Photovoltaics (ipv) of the University of Stuttgart.
About Solar Park 2.0
Carbonized polymer dots enhanced stability and flexibility of quasi-2D perovskite photodetector Changchun, China (SPX) Oct 27, 2022 High-performance photodetectors with great detection capability have been widely deployed in our daily life, such as driverless technology, intraoperative navigated surgery, face recognition, anti-counterfeiting, and so on. However, we still face challenges as new demands are required for additional functions like excellent flexibility with no sensitivity/stability loss. Therefore, novel photosensitive materials or multi-functional composites are needed to meet the fast technology development. In ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |