Solar Energy News  
SOLAR DAILY
Solar-powered desalination unit shows great promise
by Staff Writers
Washington DC (SPX) Apr 28, 2021

Solar-powered desalination unit consists of three layers: wicking material, a thermal insulator, and a paper-based solar light absorber containing titanium.

Despite the vast amount of water on Earth, most of it is nonpotable seawater. Freshwater accounts for only about 2.5% of the total, so much of the world experiences serious water shortages.

In AIP Advances, by AIP Publishing, scientists in China report the development of a highly efficient desalination device powered by solar energy. The device consists of a titanium-containing layer, TiNO, or titanium nitride oxide, capable of absorbing solar energy. The TiNO is deposited on a special type of paper and foam that allows the solar absorber to float on seawater.

When sunlight strikes the titanium layer, it heats rapidly and vaporizes the water. By placing the unit in a transparent container with a sloped quartz roof, the water vapor can be condensed and collected, producing a copious amount of freshwater.

"In the solar energy field, TiNO is a common commercial solar absorbing coating, widely used in solar hot water systems and in photovoltaic units," author Chao Chang said. "It has a high solar absorption rate and a low thermal emittance and can effectively convert solar energy into thermal energy."

The investigators developed a method for depositing a layer of TiNO using a technique known as magnetron sputtering. They used a special type of highly porous paper known as airlaid paper that acts as a wicking material to supply water from the seawater reservoir. Airlaid paper is made from wood fibers and is commonly used in disposable diapers.

The evaporation unit included three parts: the TiNO layer on top, a thermal insulator, and the airlaid paper on the bottom. The insulation layer is polyethylene foam, which has many air-filled pores that trap heat and allow the multi-layer unit to float on top of a reservoir of seawater, minimizing heat loss to the surroundings.

"The porous airlaid paper used as the substrate for the TiNO solar absorber can be reused and recycled more than 30 times," said Chang.

Salt precipitation on the TiNO surface could interfere with efficiency, but the investigators found even after a long time, no salt layer formed on the surface. They suggest the porous nature of the paper wicks away any salt that might form on the surface, returning it to the seawater reservoir.

The salinity of ordinary seawater is over 75,000 milligrams of salt per liter. Ordinary drinking water has a salinity of about 200 milligrams per liter. The desalination unit was able to decrease the seawater salinity to less than 2 milligrams per liter.

The combination of low cost, high efficiency, and lack of fouling for this desalination technology shows it has the potential to help solve the world's freshwater shortage.

Research Report: "Porous TiNO solar-driven interfacial evaporator for high-efficiency seawater desalination"


Related Links
American Institute Of Physics
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Airports could generate enough solar energy to power a city: Study
Melbourne, Australia (SPX) Apr 28, 2021
A new study has found Australia's government-owned airports could produce enough electricity to power 136,000 homes, if they had large-scale rooftop solar systems installed. Researchers at RMIT University compared electricity generated by residential solar panels in a regional Australian city to the potential green energy production of 21 leased federal airports. They found if large-scale solar panels were installed at the airports, they would generate 10 times more electricity than the city ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Incentives could turn costs of biofuel mandates into environmental benefits

Dominating fungus could be solution to producing more biofuels and chemicals

Shining, colored LED lighting on microalgae for next-generation biofuel

Scientists uncover structure of light-driven enzyme with potential biofuel applications

SOLAR DAILY
3D motion tracking system could help autonomous technologies 'see'

'Surreal dream': Romanian startup makes Wall Street splash

Army technique enhances robot battlefield operations

AI, captain! First autonomous ship prepares for maiden voyage

SOLAR DAILY
Researchers working to further develop monopile production for offshore wind farms

Blowing in the wind: Fishermen threaten South Korea carbon plans

Vertical turbines could be the future for wind farms

In Texas, a rancher swaps his oil pumps for wind turbines

SOLAR DAILY
UK signals self-driving cars could hit road this year

Daimler and Volvo promise fuel-cell trucks by 2025

Uber adds 'valet' car rentals as it looks to rev rides

Lyft to sell autonomous driving unit to Toyota for $550 mn

SOLAR DAILY
Denmark's largest battery - one step closer to storing green power in stones

Clean energy innovation slowing, report warns

Fooling fusion fuel: How to discipline unruly plasma

Hybrid material moves next-generation transport fuel cells closer

SOLAR DAILY
Seeking enhanced materials for nuclear reactors

India closer to building world's biggest nuclear plant: EDF

Sri Lanka expels ship carrying nuclear material for China

Czechs ban Rosatom from nuclear tender, rule out Sputnik vaccine

SOLAR DAILY
'Historic' legal blow for Merkel's climate plan amid Green surge

Progressive climate policy can reduce extreme poverty: study

UK's top spook reveals so-called green spying underway

Biden summit brings new hope on climate but hard path ahead

SOLAR DAILY
Andean forests have high potential to store carbon under climate change

Apple announces $200 mn forestry fund to reduce carbon

Brought in by humans, beavers threaten Patagonia forest

Rainforests of Central Africa unequally vulnerable to climate change, development









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.