Stanford scientists invent ultrafast way to manufacture perovskite solar modules by Staff Writers Stanford CA (SPX) Nov 27, 2020
Most solar cells today are made with refined silicon that turns sunlight into clean electricity. Unfortunately, the process of refining silicon is far from clean, requiring vast amounts of energy from carbon-emitting power plants. For a greener alternative to silicon, researchers have focused on thin-film perovskites - low-cost, flexible solar cells that can be produced with minimal energy and virtually no CO2 emissions. While perovskite solar cells are promising, significant challenges need to be addressed before they can become commonplace, not least of which is their inherent instability, which makes manufacturing them at scale difficult. "Perovskite solar technology is at a crossroads between commercialization and flimflammery," said Stanford University postdoctoral scholar Nick Rolston. "Millions of dollars are being poured into startups. But I strongly believe that in the next three years, if there isn't a breakthrough that extends cell lifetimes, that money will start to dry up." That's why a new perovskite manufacturing process developed at Stanford is so exciting, Rolston said. In a new study, published in the Nov. 25 issue of the journal Joule, he and his colleagues demonstrate an ultrafast way to produce stable perovskite cells and assemble them into solar modules that could power devices, buildings and even the electricity grid. "This work provides a new milestone for perovskite manufacturing," said study senior author Reinhold Dauskardt, the Ruth G. and William K. Bowes Professor in the Stanford School of Engineering. "It resolves some of the most formidable barriers to module-scale manufacturing that the community has been dealing with for years."
Fingernail-size samples Thin-film cells are lightweight, bendable and can be grown in open-air laboratories at temperatures near the boiling point of water, a far cry from the 3,000-degree Fahrenheit (1,650-degree Celsius) furnaces needed to refine industrial silicon. Scientists have developed perovskite cells that convert 25 percent of sunlight to electricity, a conversion efficiency comparable to silicon. But these experimental cells are unlikely to be installed on rooftops anytime soon. "Most work done on perovskites involves really tiny areas of active, usable solar cell. They're typically a fraction of the size of your pinky fingernail," said Rolston, who co-lead the study with William Scheideler, a former Stanford postdoctoral scholar now an assistant professor at Dartmouth College. Attempts to make bigger cells have produced defects and pinholes that significantly decrease cell efficiency. And unlike rigid silicon cells, which last 20 to 30 years, thin-film perovskite eventually degrades when exposed to heat and moisture. "You can make a small demonstration device in the lab," Dauskardt said. "But conventional perovskite processing isn't scalable for fast, efficient manufacturing."
Record-setting processor This technology uses a robotic device with two nozzles to quickly produce thin films of perovskite. One nozzle spray-coats a liquid solution of perovskite chemical precursors onto a pane of glass, while the other releases a burst of highly reactive ionized gas known as plasma. "Conventional processing requires you to bake the perovskite solution for about half an hour," Rolston said. "Our innovation is to use a plasma high-energy source to rapidly convert liquid perovskite into a thin-film solar cell in a single step." Using rapid-spray processing, the Stanford team was able to produce 40 feet (12 meters) of perovskite film per minute - about four times faster than it takes to manufacture a silicon cell. "We achieved the highest throughput of any solar technology," Rolston said. "You can imagine large panels of glass placed on rollers and continuously producing layers of perovskite at speeds never accomplished before." In addition to a record production rate, the newly minted perovskite cells achieved a power conversion efficiency of 18 percent. "We want to make this process as applicable and broadly useful as possible," Rolston said. "A plasma treatment system might sound fancy, but it's something you can buy commercially for a very reasonable cost." The Stanford team estimated that their perovskite modules can be manufactured for about 25 cents per square foot - far less than the $2.50 or so per square foot needed to produce a typical silicon module.
Solar modules Toward this end, the Stanford team successfully created perovskite modules that continued to operate at 15.5 percent efficiency even after being left on the shelf for five months. Conventional silicon modules produce electricity at a cost of about 5 cents per kilowatt-hour. To compete with silicon, perovskite modules would have to be encapsulated in a weatherproof layer that keeps out moisture for at least a decade. The research team is now exploring new encapsulation technologies and other ways to significantly improve durability. "If we can build a perovskite module that lasts 30 years, we could bring down the cost of electricity below 2 cents per kilowatt-hour," Rolston said. "At that price, we could use perovskites for utility-scale energy production. For example, a 100-megawatt solar farm."
Trina Solar and Tongwei join forces to further upgrade the 210 integrated industrial chain Zurich, Switzerland (SPX) Nov 20, 2020 Trina Solar reports it's agreement with Tongwei Co., Ltd. has reached a new level, with three investments and a long term procurement cooperation framework agreement now in place. Gao Jifan, Chairman of Trina Solar, said that the two leading companies focused on 210 products and cooperated to make the 210 industrial ecosystem stronger and bigger. Joint ventures and cooperation among strong players, who complement each other, have bigger advantages than simple vertical integrations within themselve ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |