Starting small to answer the big questions about photosynthesis by Staff Writers Leeds UK (SPX) Mar 17, 2021
New scientific techniques are revealing the intricate role that proteins play in photosynthesis. Despite being discovered almost 300 years ago, photosynthesis still holds many unanswered questions for science, particularly the way that proteins organise themselves to convert sunlight into chemical energy and at the same time, protect plants from too much sunlight. Now a collaboration between researchers at the University of Leeds and Kobe University in Japan is developing a novel approach to the investigation of photosynthesis. Using hybrid membranes that mimic natural plant membranes and advanced microscopes, they are opening photosynthesis to nanoscale investigation - the study of life at less than one billionth of a metre - to reveal the behaviour of individual protein molecules. Dr Peter Adams, Associate Professor in the School of Physics and Astronomy at the University of Leeds, who supervised the research, said: "For many decades scientists have been developing an understanding of photosynthesis in terms of the biology of whole plants. This research is tackling it at the molecular level and the way proteins interact. "A greater understanding of photosynthesis will benefit humankind. It will help scientists identify new ways to protect and boost crop yields, as well as inspire technologists to develop new solar-powered materials and components." The findings are published in the academic journal Small. Photosynthesis happens when photons or packets of light energy cause pigments inside light-harvesting proteins to become excited. The way that these proteins arrange themselves determines how the energy is transferred to other molecules. It is a complex system that plays out across many different pigments, proteins, and layers of light-harvesting membranes within the plant. Together, it regulates energy absorption, transfer, and the conversion of this energy into other useful forms. To understand this intricate process, scientists have been using a technique called atomic force microscopy, which is a device capable of revealing components of a membrane that are a few nanometres in size. The difficulty is that natural plant membranes are very fragile and can be damaged by atomic force microscopy. But last year, the researchers at Kobe University announced that they had developed a hybrid membrane made up of natural plant material and synthetic lipids that would act as a substitute for a natural plant membrane - and crucially, is more stable when placed in an atomic force microscope. The team at the University of Leeds used the hybrid membrane and subjected it to atomic force microscopy and another advanced visualisation technique called fluorescence lifetime imaging microscopy, or FLIM. PhD researcher Sophie Meredith, also from the School of Physics at the University of Leeds, is the lead author in the paper. She said: "The combination of FLIM and atomic force microscopy allowed us to observe the elements of photosynthesis. It gave us an insight into the dynamic behaviors and interactions that take place. "What is important is that we can control some of the parameters in the hybrid membrane, so we can isolate and control factors, and that helps with experimental investigation. "In essence, we now have a 'testbed' and a suite of advanced imaging tools that will reveal the sub-molecular working of photosynthesis."
New analysis of 2D perovskites could shape the future of solar cells and LEDs Guildford UK (SPX) Mar 17, 2021 An innovative analysis of two-dimensional (2D) materials from engineers at the University of Surrey could boost the development of next-generation solar cells and LEDs. Three-dimensional perovskites have proved themselves remarkably successful materials for LED devices and solar panels in the past decade. One key issue with these materials, however, is their stability, with device performance decreasing quicker than other state-of-the-art materials. The engineering community believes the 2D varian ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |