Solar Energy News  
SOLAR DAILY
Surrey is leading the way in perovskite tandem solar cells
by Staff Writers
Guildford UK (SPX) Oct 19, 2020

stock illustration

Scientists from the University of Surrey have revealed the significant improvements they are making in perovskite-based solar cells. Perovskite solar cells have shown significant potential in reaching the efficiency limit of the widely used solar cells currently on the market by absorbing light in a broader range of wavelengths.

Industry has also been paying close attention to the development of perovskite-based cells thanks to their low-cost and simple fabrication, and their efficient combination with other types of solar cells to produce tandems.

Perovskite solar cells have emerged as the heir apparent to silicon-based solar cells because of their high-power energy conversion efficiency, low development cost, and ability to be ultra-lightweight. Named after a naturally occurring mineral that shares a structurally similar chemical formula, perovskites are synthetic composites that have three-dimensional lattice crystal structures.

In a front-cover paper published by the top American Chemical Society journal Chemical Reviews, the team from Surrey's Advanced Technology Institute (ATI) summarise the recent progress in improving perovskite tandem solar cells power conversion efficiencies, including thickness adjustment of perovskite, improving the transparency of perovskite solar cells, more effective protective layers and much more. The team also highlight measurement techniques, large-scale fabrication, commercialization development and lead-related environmental issues.

In the paper, the team offer a roadmap for further progress, including strategies for the enhancement of the power conversion efficiencies, stability and reliability assessments, and potential applications.

Dr Wei Zhang, the corresponding author and Senior Lecturer in Energy Technology at ATI, said: "Perovskite tandem solar cells are at the forefront of next-generation photovoltaic technologies. Our timely review summarizes the fundamentals of this exciting research field and future applications, which are expected to accelerate the commercialization of this low-cost and high-efficiency photovoltaic product as a major competitor to the traditional crystalline silicon solar cells in the next few years."

Professor Hui Li, first-author and Visiting Professor and Advanced Newton Fellow at ATI, said: "We are excited to offer this review that is showing great potential for moving our planet towards green energy."

Professor Ravi Silva, Director of ATI at the University of Surrey, said: "We are happy to see this wonderful research finally being used for real-world applications and we look forward to continuing our collaboration on perovskite tandem solar cells, which is a research priority area at ATI."

Research paper


Related Links
University Of Surrey
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Neutrons show twinning in halide perovskites
Berlin, Germany (SPX) Oct 14, 2020
A good ten years ago, research teams discovered the class of semi-organic halide perovskites, which are now making a rapid career as new materials for solar cells. The mixed organic-inorganic semiconductors achieved efficiencies of over 25 percent within a few years. They take their name from their basic structure, which is very similar to that of the mineral perovskite (CaTiO3), but contains other components: halide anions, lead cations and organic molecular cations. In the case of the most ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Artificial cyanobacterial biofilm can sustain green ethylene production for over a month

Hungary chlorine gas leak injures 28 at refinery

Lighting the path to recycling carbon dioxide

Inducing plasma in biomass could make biogas easier to produce

SOLAR DAILY
NTU Singapore scientists develop 'mini-brains' to help robots recognize pain and to self-repair

Robot swarms follow instructions to create art

What tiny surfing robots teach us about surface tension

First tests for landing the Martian Moons eXploration Rover

SOLAR DAILY
California offshore winds show promise as power source

Offshore wind power now so cheap it could pay money back to consumers

SOLAR DAILY
SUVs targeted in new French 'weight tax'

Uber and Lyft argue in California court over status of drivers

Audi boosts e-vehicle presence in China

The Safe Light Regional Vehicle makes its debut

SOLAR DAILY
A new approach boosts lithium-ion battery efficiency and puts out fires, too

LiU researchers first to develop an organic battery

UNLV and University of Rochester physicists observe room-temperature superconductivity

How impurities enhance a thermoelectric material at the atomic level

SOLAR DAILY
Bulgaria plans to install US-made nuclear reactor

Framatome showcases nuclear technologies at China's first international nuclear exhibition since COVID-19

Framatome and General Atomics announce collaboration to develop fast modular reactor

Close-up monitoring of radioactive processes

SOLAR DAILY
Real-time data show COVID-19's massive impact on global emissions

ECB's Lagarde urges more green finance

Virus crisis an opportunity to reshape climate reponse: IEA

Critics see gap in BlackRock's climate rhetoric and record

SOLAR DAILY
Droughts are threatening global wetlands: new study

Ecuadoran indigenous activist recognized by Time for fighting for her jungle

Brazil court blocks move to repeal mangrove protections

Brazil's Bolsonaro hits back at Biden over rainforest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.