Thin-film photovoltaic technology combines efficiency and versatility by Staff Writers Karlsruhe, Germany (SPX) Jun 29, 2022
tacking solar cells increases their efficiency. Working with partners in the EU-funded PERCISTAND project, researchers at the Karlsruhe Institute of Technology (KIT) have produced perovskite/CIS tandem solar cells with an efficiency of nearly 25percent- the highest value achieved thus far with this technology. Moreover, this combination of materials is light and versatile, making it possible to envision the use of these tandem solar cells in vehicles, portable equipment, and devices that can be folded or rolled up. Perovskite solar cells have made astounding progress over the past decade. Their efficiency is now comparable to that of the long-established silicon solar cells. Perovskites are innovative materials with a special crystal structure. Researchers worldwide are working to get perovskite photovoltaic technology ready for practical applications. The more electricity they generate per unit of surface area, the more attractive solar cells are for consumers The efficiency of solar cells can be increased by stacking two or more cells. If each of the stacked solar cells is especially efficient at absorbing light from a different part of the solar spectrum, inherent losses can be reduced and efficiency boosted. The efficiency is a measure of how much of the incident light is converted into electricity. Thanks to their versatility, perovskite solar cells make outstanding components for such tandems. Tandem solar cells using perovskites and silicon have reached a record efficiency level of over 29percent, considerably higher than that of individual cells made of perovskite (25.7percent) or silicon (26.7percent).
Combining Perovskites with CIS for Mobility and Flexibility An international team of researchers headed by Dr. Marco A. Ruiz-Preciado and tenure-track professor Ulrich W. Paetzold from the Light Technology Institute (LTI) and the Institute of Microstructure Technology (IMT) at KIT has succeeded in producing perovskite/CIS tandem solar cells with a maximum efficiency of 24.9percent (23.5percent certified). "This is the highest reported efficiency for this technology and the first high efficiency level reached at all with a nearly gallium-free copper-indium diselenide solar cell in a tandem," says Ruiz-Preciado. Reducing the amount of gallium results in a narrow band gap of approximately one electron volt (eV), which is very close to the ideal value of 0.96eV for the lower solar cell in a tandem.
CIS Solar Cells with Narrow Band Gap- Perovskite Solar Cells with Low Bromine Content To adjust the band gap for efficient tandem integration, perovskites with high bromine content are usually used. However, this often leads to voltage drops and phase instability. Since the KIT researchers and their partners use CIS solar cells with a narrow band gap at the base of their tandems, they can produce their upper cells using perovskites with low bromine content, which results in cells that are more stable and efficient. "Our study demonstrates the potential of perovskite/CIS tandem solar cells and establishes the foundation for future development to make further improvements in their efficiency," says Paetzold. "We've reached this milestone thanks to the outstanding cooperation in the EU's PERCISTAND project and, in particular, thanks to our close cooperation with the Netherlands Organisation for Applied Scientific Research." Important groundwork was done in the CAPITANO project funded by Germany's Federal Ministry for Economic Affairs and Climate Action (BMWK).
Research Report:Monolithic Two-Terminal Perovskite/CIS Tandem Solar Cells with Efficiency Approaching 25%
EU ministers set renewable energy target at 40 percent Luxembourg (AFP) June 27, 2022 EU energy ministers on Monday agreed to increase the share of European energy consumption coming from renewables such as solar or wind power to 40 percent by 2030. The legally binding target, which was previously set at 32 percent, is part of the EU's ambition to reduce greenhouse gas emissions by 55 percent by 2030, compared to baseline amounts recorded in 1990. This would set the path towards achieving net zero carbon emissions in Europe by 2050. Energy ministers meeting in Luxembourg also ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |