Solar Energy News
SOLAR DAILY
Toward high-efficiency thin crystalline silicon solar cells
High-performance 20-um-thin crystalline silicon (c-Si) solar cell design uses much less silicon. Figures from the report by Xie et al. include (left) a semi-finished c-Si cell on a flexible steel substrate; (middle) a complete cell; (right) image of a fabricated thin c-Si cell showing its flexibility.
Toward high-efficiency thin crystalline silicon solar cells
by Staff Writers
Washington DC (SPX) Oct 02, 2023

Solar power has become indispensable in our global pursuit of clean energy and sustainability. Today, about 95 percent of solar cells are made using crystalline silicon (c-Si). Most commercial designs employ a c-Si photoactive layer with a thickness of around 160-170 um. However, since silicon alone makes up nearly half the cost of each solar panel, experts believe that next-generation c-Si solar cells will be much thinner.

Unfortunately, despite a few recent improvements, the conversion efficiency of thin c-Si solar cells still lags far behind that of thick industrial ones. This problem stems from the fact that the best design strategies for thin c-Si cells only maximize individual parameters, such as short-circuit current density, open-circuit voltage, or fill factor. None of the current methods can simultaneously improve these parameters, all of which are important for realizing high efficiency.

Against this backdrop, a research team from Hangzhou Dianzi University, China, has developed a new strategy to achieve remarkable efficiency improvements in thin c-Si solar cells. Their study, published the Journal of Photonics for Energy (JPE), represents a significant breakthrough in the field of silicon solar cell technology.

The proposed strategy optimizes a few key optical and electrical characteristics, which the team identified to be responsible for the differences in the reported conversion efficiencies of thick and thin c-Si solar cells. Using commercial software programs, they ran optical simulations of various thin cell designs. Through further experiments using solar cells, the researchers arrived at an innovative fabrication methodology that offers several advantages over conventional techniques.

Instead of using the silicon ingot cutting approach typically used to manufacture thick c-Si layers, the team employed a layer transfer method. They used hydrofluoric acid to etch pores into a thick silicon wafer. This porous layer served as a substrate to grow a 20-um-thin monocrystalline silicon layer, which could be easily detached and transferred onto a flexible stainless-steel substrate.

To enhance the optical and electrical performance of the thin silicon layer, the researchers deposited multiple metal nanofilms on both sides using plasma-enhanced chemical vapor deposition-SiO2/SiNx/SiOx layers and Al2O3/SiNx/SiOx layers with a pyramidal texture on the sides facing the front and rear of the solar cell, respectively.

The front SiNx/SiOx and rear SiOx/SiNx layers increased the light absorption of the silicon layer in the shorter and longer wavelengths, respectively. This, in turn, enhanced the short-circuit current density-a measure of the number of charge carriers that can be generated and collected by the solar cell. Compared with a standard solar cell used as reference, the current density increased from 34.3 to 38.2 mA/cm2.

Furthermore, the SiO2 and Al2O3 layers provided high surface passivation, minimizing the recombination and loss of generated charge carriers. This led to a higher open-circuit voltage-a measure of the maximum voltage generated by a solar cell. It was boosted from 632 mV in the reference cell to 684 mV when using the proposed design. Consequently, the fill factor of the solar cell, an indicator of how close a solar cell operates to its theoretical maximum efficiency, increased from 76.2 to 80.8 percent.

As confirmed by both simulations and experiments, the proposed strategy resulted in an enhancement of conversion efficiency from 16.5 to 21.1 percent, a remarkable gain of 4.6 percent (corresponding to an approximately 28 percent improvement, compared to the reference cell). This puts the efficiency of thin c-Si solar cells close to that of their industrial thick counterparts, which today clocks in at 24 percent.

JPE Associate Editor Leonidas Palilis, Professor of Condensed Matter Physics at University of Patras, Greece, remarks, "Overall, the findings of this study present a novel way to realize high-performance thin crystalline silicon solar cells using much less silicon-for a 20-um cell, around one eighth of the amount required for a thick 160-um cell on a given panel size." This advance will likely contribute to more widespread cost-effective adoption of silicon solar power technology, due to the reduced cost and the concomitant expansion of the solar panel manufacturing capacity.

Research Report:Investigation on significant efficiency enhancement of thin crystalline silicon solar cells

Related Links
International Society for Optics and Photonics
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
Solar panels go into service near North Pole
Kapp Linne, Norway (AFP) Sept 19, 2023
Norway has installed solar panels in its Svalbard archipelago, a region plunged in round-the-clock darkness all winter, in a pilot project that could help remote Arctic communities transition to green energy. Neatly lined up in six rows in a field, 360 solar panels will on Thursday begin providing electricity to an old shipping radio station, Isfjord Radio, now converted into a base camp for tourists. The windswept archipelago - also known as Spitsbergen - is located some 1,300 kilometres (800 ... read more

SOLAR DAILY
Lightning strike hits UK biogas facility

Aston University research pioneers making renewable hydrogen and propane fuel gases from glycerol

Making aviation fuel from biomass

Chevron, partners develop a transportation fuel using animal waste as a feedstock

SOLAR DAILY
Instant evolution: AI designs new robot from scratch in seconds

Is AI in the eye of the beholder?

How to build better extraterrestrial robots

Meta technology chief defends tech titan's AI strategy

SOLAR DAILY
Harvesting wind energy in small countries with low wind speed and limited

How wind turbines react to turbulence

Work starts on key German wind power energy line

No offshore wind in latest UK green energy auction

SOLAR DAILY
VinFast boss insists share volatility 'normal'

Swiss-led team drives electric vans from Geneva to Doha

Factory shutdowns hit Tesla's third quarter deliveries

UK government to push back on 'anti-car measures'

SOLAR DAILY
Superconductivity at room temperature remains elusive

France taps nuclear know-how to recycle electric car batteries

New approach may help extract more heat from geothermal reservoirs

Warming up! 30 years of fusion-energy research at EPFL

SOLAR DAILY
China fosters new-generation nuclear power reactors

Chi-Nu experiment ends with data to support nuclear security, energy reactors

Poland signs deal with Westinghouse for first nuclear power plant

Framatome awarded DoE contract to advance Digital Twin-based Diagnostics

SOLAR DAILY
Vietnam confirms arrest of energy think tank chief

Eurozone firms fret over stricter climate standards: survey

Decarbonising shipping to cost over $100 bn per year: UN

Macron promises heat pump boost in French climate plan

SOLAR DAILY
How to tackle the global deforestation crisis

Brazil Senate approves bill restricting Indigenous land rights

Tree-hugging AI to the rescue of Brazilian Amazon

Petition against felling trees in historic Tokyo park area

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.