Solar Energy News  
SOLAR DAILY
Unique insight into the interior of the Arabidopsis photosynthesis machine
by Staff Writers
Umea, Sweden (SPX) Aug 18, 2021

illustration only

For the first time, Umea researchers have, with the help of cryogenic electron microscopy, succeeded in producing a high-resolution image of photosystem II - the central complex of photosynthesis - of the model plant Arabidopsis. The enormous complex is responsible for the vital oxygen production in photosynthesis that once made life possible on our planet. The study is published in Scientific Reports.

"The structure gives us detailed information about the various cofactors such as chlorophyll and the lipid molecules in photosystem II. We have also managed to show exactly where and how detergents bind and affect the stability of the complex," says Wolfgang Schroder, professor at the Department of Chemistry at Umea University Sweden, who led the study.

The plant researchers' "experimental rat" has for the past 25 years been the plant thale cress/mouse-ear cress Arabidopsis thaliana. The reason for this is that this "weed" grows rapidly even at our northern latitudes in Sweden and in 2000, researchers succeeded in sequencing all its genes.

At the heart of the photosynthetic process is the Photosystem II complex. It contains almost 30 different proteins and a number of cofactors such as different pigments and metals and it is without any doubt one of the largest complexes in plant chloroplasts. The now published structure from this study has the same high-resolution as the two previous structures obtained from spinach and pea, which for the first time enables a comparison of plants' photosystem II complex with the same level of detail.

"I have worked with this complex since I became a PhD student in plant protein chemistry at Lund University in 1983," says Wolfgang Schroder. "I remember that as a doctoral student I joked at the coffee break "think if you could dive into photosystem II and look around". Today with new technology and my extremely talented doctoral student Andre Graca and my two fantastic research colleagues Michael Hall and Karina Persson, we have now been able to do this."

The technology that the researchers have used is called cryogenic electron microscopy (Nobel Prize in Chemistry 2017) and it briefly means that biological samples are shot down into liquid ethane (-190 degrees Celsius). Nearly 100,000 two-dimensional EM particle images from random orientations are selected. Using several computational resources, the collection of 2D images can then be used to reconstruct a three-dimensional structure.

"Additionally, it was extremely exciting to see if our previous biochemical analyzes of the complex were correct. Usually, the privilege of publishing structures with this size and resolution is only possible to larger research teams from different laboratories, as it requires a lot of data, time and effort. In our case we are four Umea researchers within the network Integrated Structural Biology, ISB, who created this structure so it is "locally" produced research," says Wolfgang Schroder with a smile.

Research Report: "High-resolution model of Arabidopsis Photosystem II reveals the structural consequences of digitonin-extraction"


Related Links
Umea University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Harnessing sunlight to fuel the future through covalent organic frameworks
Solan, India (SPX) Aug 16, 2021
Be it rising fuel prices or failures in electricity power grids, the consequences of global energy crisis are hard to ignore. The need for alternate fuel sources is greater than ever, but, despite the popularity of solar panels, a vast amount of solar energy goes untapped. Now, a multinational team of researchers explore existing research on covalent organic frameworks (COFs), a new class of light-absorbing compounds, as a potential solution for efficient solar-driven fuel production. Photocatalys ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Drink and drive: whisky waste powers Scottish trucks

Stinkweed could make a cleaner bio-jet fuel, study finds

Catalyzing the conversion of biomass to biofuel

Airbus joins SAF+ Consortium to for sustainable aviation fuels

SOLAR DAILY
Inflatable robotic hand gives amputees real-time tactile control

Army award-winning research to transform Soldier-robot communication

Artificial Intelligence learns better when distracted

Kitchen robot in Riga cooks up new future for fast food

SOLAR DAILY
For golden eagles, habitat loss is main threat from wind farms

Wind turbines can be clustered while avoiding turbulent wakes of their neighbors

Shell, France's EDF to build US offshore windfarm

Wind and the sun power Greek islands' green energy switch

SOLAR DAILY
Designing better batteries for electric vehicles

US opens probe of Tesla Autopilot after 11 crashes: agency

Electrifying cars and light trucks to meet Paris climate goals

Dutch lead charge for electric car stations

SOLAR DAILY
Scientists detect characteristics of the birth of a major challenge to harvesting fusion energy on Earth

Department of Energy to provide $100 million for high energy physics research

Europe to boost battery production as electric shift accelerates

Department of Energy announces $9.35 million for research on high energy density plasmas

SOLAR DAILY
Framatome and BBF achieve testing milestone for medical sterilization transport system

Framatome acquires nuclear power systems division of RCM Technologies Canada Corp

Framatome's steam generator replacement expertise supports long-term operations in Canada

China nuclear reactor shut down for maintenance after damage

SOLAR DAILY
Australia rejects climate targets despite damning UN report

China signals steady course after UN climate warning

US says cannot delay 'ambitious' action to protect climate

Areas of Iraqi province lose power after attack on pylons

SOLAR DAILY
Brazil has near-record year for Amazon deforestation

Russia's forests store more carbon than previously thought

Trapped saltwater caused mangrove death after Hurricane Irma

Finnish monks turn to forestry to cover virus losses









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.