Using renewable electricity for industrial hydrogenation reactions by Staff Writers Pittsburgh PA (SPX) Oct 30, 2019
From the design of improved batteries to the use of solar and wind power for commodity chemical production, the University of Pittsburgh's James McKone ways that chemical engineering can make the world more sustainable. That's why his most recent work, investigating ways that the chemical industry can use renewable electricity as its energy source, is featured in the Journal of Materials Chemistry A Emerging Investigators special issue. The themed issue highlights the rising stars of materials chemistry research, from nanoparticle inks to next-generation solar cells. The featured investigators are early in their careers and were recommended by other experts in the field. Dr. McKone is an assistant professor of chemical engineering at Pitt's Swanson School of Engineering, "We're glad to have James on our faculty and know this honor is well-deserved," says Steven Little, PhD, chair of the Department of Chemical and Petroleum Engineering at the Swanson School. "It confirms what we already know: that his lab's work has the potential to influence the direction of future discoveries in energy production, energy storage and beyond." The paper, "Comparisons of WO3 reduction to HxWO3 under thermochemical and electrochemical control", features experiments and analysis completed by Evan V. Miu, a doctoral candidate in the McKone Lab. In this paper, McKone and Miu lay the groundwork for a new way to use renewable electricity as the primary energy input for industrial hydrogenation reactions, which are extremely important in the production of fuel and fertilizer. "The rapid growth in the electric vehicle market shows that it will be possible to replace fossil fuels with renewable electricity in the transportation sector" says McKone. "But the industrial sector also uses a lot of fossil resources, and we don't really know how to make, for example, plastic out of anything but petroleum. We're working to change that by inventing ways to convert the most abundant resources on the planet - air and seawater - into many of the fuels and chemicals that we use every day." Earlier this year, McKone was selected by the Oak Ridge Associated Universities (ORAU) as one of 36 recipients of this year's Ralph E. Powe Junior Faculty Enhancement Award. The award supports his project aimed at increasing the efficiency of redox flow batteries, making it easier for the electric grid to accommodate massive quantities of renewable power. "Comparisons of WO3 reduction to HxWO3 under thermochemical and electrochemical control"
Can solar technology kill cancer cells? East Lansing MI (SPX) Oct 27, 2019 Scientific breakthroughs don't always happen in labs. For Sophia and Richard Lunt, Michigan State University researchers, many of their breakthroughs happen during neighborhood walks. The married couple's step-by-step approach has revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power. The results, published in the current issue of Scientific Reports, showcases dramatic improvements in light-activated fluorescent dyes for disease diagnosis, ima ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |